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Abstract

We considered a data matrix with N = 3300 rows (objects, genes) and d = 13 columns representing variables (traits)
measured for each object (identified gene). The 13 characteristics were obtained from so called ’spider-plots’ constructed for
each gene. Our goal was to find a latent structure in the data and possibly reduce the dimensionality of the data. To achieve
this goal we used the methods of ordinary principal components (PC), probabilistic principal components (PPCA) and feed
forward neural networks (multi-layer perceptrons). We got some evidence, that H=6 latent variables explain the essential
features of the data. Our results are the following: a) First six principal components explain 0.8844 of total variance, however
have no interesting interpretation; b) First 6 probabilistic principal components with rotation varimax explain 78.53 % of
total variance of the data and have a very interesting interpretation: the set of the primary 12 variables is reduced to 3
double factors, each factor expressed by 2 latent variables; thus we found a meaningful latent structure with a parsimonious
representation. c) The multi-layer perceptron with architecture 13–6–13 explains about 88.40 % of total variance, moreover,
the matrix of weights, after permuting the columns, yields the same interesting interpretation as the PPCA. Thus a neural
network (perceptron) is able to reduce the dimensionality and yield a parsimonious representation of the original variables,
similar to that yielded by the PPCA. This – to our knowledge – was not noticed before.

Keywords: reduction of dimensionality, yeast genome, latent structure, probabilistic PCA, multi-layer perceptron

1. Introduction, the data and the problem

We consider data characterizing N = 3300 yeast genes, each
described by d = 13 variables (traits). The data will be in
the following referred to as the yeast genome data. A more
detailed description of the data may be found in [4, 5, 1] or
[12].

The gathered variables have a quite clear meaning and
some of them are fairly dependent. Attempt to simply omit
some of the variables is not working: the eventually omit-
ted variables (by use of the idep procedure) can not be ex-
plained in a satisfactory manner by the retained variables.
At least some of the recorded variables are fairly interdepen-
dent, which may be seen when looking at the correlation map
shown in Figure 1.

Our problem is: Could the observed variables be trans-
formed to a reduced set, containing H < d new, derived fea-
tures – without loosing not too much of total inertia (vari-
ance) of the entire set.

Our goal may be formulated in two points:

1. to find a latent structure in the data,

2. possibly reduce the dimensionality, i.e. the number of
variables.

We will work with 3 methods:

PCA, traditional principal component analysis,

PPCA, probabilistic principal component analysis,

ANN, artificial neural networks, multi-layer perceptrons.

Special emphasis will be put on comparison of results pro-
vided by the PPCA and ANN methods.

In the following we explain briefly the methods and show
some results obtained when using the chosen methods.
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Fig. 1. Correlation map for 13 variables characterizing yeast
genes. The strength of correlation – positive or negative – is
expressed by color shade.

2. Traditional PCA and Probabilistic PCA

2.1. Traditional PCA

PCA is a well known technique of data analysis (see, e.g.,
the book by Jolliffe [7]). It works in terms of approximation
theory. No underlying generative model of the data is pro-
vided. The results are heuristic, depending on the gathered
data. The method reproduces in a purely mathematical way
the entire data set (or, its covariance matrix), by rank one
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matrices.
To perform the PCA, one needs to calculate firstly the

eigenvalues λ1, . . . , λd and the corresponding eigenvectors
a1, . . . , ad of the covariance or correlation matrix S of the
data. The derived eigenvalues and eigenvectors serve for con-
struction of the principal components. They allow to repro-
duce the matrix S by lower rank matrices and estimate the
quality of the reproduction.

Let t = (t1, . . . , td)T denote the observed variables.
For computational convenience we assume, throughout this

paper – that the variables are 0–centered and have unit vari-
ances. In such a case the covariance matrix is equal to the
correlation matrix.

Then, with the d eigenvectors of the covariance (correla-
tion) matrix of these variables, we may construct d new vari-
ables (features), defining them as:

zj = aT
j t, j = 1, . . . , d. (1)

Definition 1. Principal components.

The variables zj , j = 1, . . . , d constructed using the for-
mula (1) above are called principal components. They are
independent linear combinations of the observed variables t
and have variances var(zj) = λj , j = 1, . . . , d.

For a given zj (alias: the jth PC) the coefficients of the
corresponding eigenvector aj are called sometimes loadings
of that variable.

In the following we will need the following two properties:

Property 1. Reproduction of the covariance matrix.

S =

d∑
j=1

λjaja
T
j . (2)

Property 1 says that the matrix S can be reproduced by
rank 1 matrices composed from subsequent eigenvalues and
eigenvectors.

Property 2. Reproduction of the sum of variances.

trace(S) =

d∑
j=1

s2
j =

d∑
j=1

trace(λjaja
T
j ) =

d∑
j=1

λj . (3)

This property describes the quality of the reproduction;
we use that property to say, how much of total variance of
the original variables is reproduced by subsequent principal
components.

Property 2 says that the sum of variances of the original
variables is equal to the sum of all eigenvalues of the covari-
ance matrix S. The sum of all variances (trace(S)) is called
the total variance or the total inertia.

If the first eigenvalues are big (constitute a big percentage)
in relation to the remaining ones, then the corresponding prin-
cipal components explain a big percentage of total variance,
and the remaining ones may be neglected.

2.2. Probabilistic principal components based on the concept
of latent variables

A more general approach to modelling of the data is to intro-
duce a generative model. This is done by building a model
based on latent variables and superposition of an additional
noise.

One such model, called probabilistic principal components,
was elaborated by Tipping and Bishop (see, e.g., [13, 3]). The
following basic model is assumed:

t = Wx + µ + ε , (4)

or, alternatively, writing explicitly the dimensions:
td×1 = Wd×HxH×1 + µd×1 + εd×1.

Vector t denotes the observational and vector x – the latent
variables. Conventionally it is assumed that x is distributed
NH(0, I), with the H latent variables offering a more parsi-
monious explanation of the dependencies between the obser-
vations.

The variable ε in the model above denotes additional Gaus-
sian noise, independent of x, distributed Nd(0, σ2I).

The observed values of t are supposed to be generated by
H < d hidden (latent) variables x distributed normally with
isotropic variance.

Under the assumed model (4) the marginal distribution of
the observed vector t is again normal (we follow here [13]):

t ∼ Nd(µ,WWT + σ2I). (5)

Hence, for a given sample of N observed vectors {tn}, n =
1, . . . , N , the corresponding log-likelihood function L∗ can be
easily constructed. It takes the form:

L∗ = −N

2
[d · ln(2π) + ln|C|+ tr(C−1S)],

with C = WWT +σ2I, and S denoting the sample covariance
matrix:

S =
1

N

N∑
n=1

(tn − µ)(tn − µ)T .

The unknown parameters of the model (5) are: Wd×H and
σ2. They may be estimated directly from the log-likelihood
L∗. Tipping and Bishop [13] found that the log-likelihood is
maximized when taking the following estimates:

WML = UH(ΛH − σ2I)1/2R, (6)

σ2
ML =

1

d−H

d∑
j=H+1

λj , (7)

with
• ΛH = diag(λ1, . . . , λH) containing the largest H eigenval-
ues of S, where λ1 ≥ . . . ≥ λH ,
• UH = [u1, . . . ,uH ] containing the corresponding eigenvec-
tors of S,
• R being an arbitrary H ×H orthogonal rotation matrix.

Tipping and Bishop [13] refer to σ2
ML as to the variance

’lost’ in the projection, averaged over the lost dimensions.

The presented PPCA model resembles the model of factor
analysis (known in the statistical methodology), however, as
pointed out in [13], there are some important distinctions
resulting from the use of the isotropic noise covariance in
generating the x’es. One major distinction is that PPCA
extracts the principal axes incrementally.

Comparing the PCA and PPCA we state, that both meth-
ods use the eigenvalues and eigenvectors of S as key elements
for computing. However the derived principal directions are
scaled in a different way.
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The found statistics WML and σ2
ML provide a maximum

likelihood estimate for C, the covariance matrix of the ob-
served variables t generated – according to the model (4) –
by H latent variables:

Ĉ = WMLWT
ML + σ2

MLI

Obviously, all the derived estimates depend from the number
H of latent variables.

Thus, the formula above might be rewritten in a more pre-
cise way for H = 1, . . . , d− 1 as

Ĉ(H) = WML(H)W
T
ML(H) + σ2

ML(H)I. (8)

To get an analogy with Property 1 of principal components,
let w̃j(H) denote the jth column of WML(H). Then WML(H)

may be rewritten as

WML(H) = [w̃1(H), . . . , w̃H(H)].

Taking this into account, we may rewrite the formula for Ĉ(H)

as

Ĉ(H) =

H∑
j=1

w̃j(H)w̃
T
j(H) + σ2

ML(H)I, 1 ≤ H < d . (9)

2.3. How to find the right dimension?

The fundamental question is: How large should be H, de-
noting the number of retained PCs (when performing PCA),
and the number of hidden (latent) variables (when performing
PPCA)?

Using PCA, the question may be answered by inspecting so
called scree graph, constructed from the eigenvalues derived
from the analyzed data (see, e.g., Jolliffe [7]). The scree graph
constructed for the gene data is shown in Figure 2.

0 2 4 6 8 10 12 14
0

1

2

3

4 subsequent eigenvalues

Fig. 2. PPC. Scree graph from correlation matrix calculated
from N = 3300 genes. The graph exhibits the decay of subse-
quent eigenvalues 1, 2, . . . 13. One may notice that beginning
from the seventh eigenvalue the decay exhibits linear pattern.

Albeit inference based on a scree graph belongs to heuristic
methods, the scree graph proved to be very useful in practice.

The scree graph is simply a plot of (j, λj), j = 1, . . . , d.
We look at the decay of subsequent eigenvalues. When the
decay starts to be linear, then it is deduced that the entire
interdependence structure between the observed variables is
already explained and included in the previous PC’s.

Inspecting the graph shown in Figure 2 one may see that
starting from the 7th eigenvalue the decay is linear. Thus the
intrinsic dimension of the data is accepted as H = 6.

Similarly, when working with PPCA, the number of latent
variables may be estimated from the scree graph exhibiting
the decay of residual variances obtained from eq. (7). The
respective graph is shown Figure 3.
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Fig. 3. PPCA. Scree graph obtained on the basis of cor-
relation matrix calculated from N = 3300 genes. Residual
variances σ2

ML are put against q, the number of latent vari-
ables included into the model. For model dimension q, the
residual variance is calculated as (

∑
j>q

λj)/(d− q).

Generally, both statistics (i.e. the eigenvalues and the
residual errors) decrease, when augmenting the number of
latent variables included into the model. Starting from a
number q, 1 ≤ q < d the decay exhibits a linear pattern. Ap-
pearance of a linear pattern means that the decay is propor-
tional to the number d−q of remaining (not yet accounted for)
latent variables. This means also that there is no more com-
mon structure to extract; and that the remaining variables
are independent and have an individual random variance σ2,
which may viewed as Gaussian noise.

Looking at the plots shown in Figure 3 one may state, that
this linear decay pattern starts to the right of q = 6. To the
right of the 6th residual variance – marked by a big filled
circle – the decay exhibits a linear pattern, which means that
no more common factors can be extracted. Thus it seems
that q = 6 is the right number of latent variables.

Therefore we decided to seek for H = 6 hidden factors.

3. Multi-layer perceptron

Artificial neural networks (ANNs) provide a methodology
which may be seen in terms of predictions. The ANN, learn-
ing from a provided training sample, is expected to build a
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model, which – on the basis of given explanatory variables –
permits to predict the sought target.

Nabney [9] writes: ”The goal of training a network is to
model the underlying generator of the data in order to make
the best possible predictions when new input data is pre-
sented. The most general information about the target vector
t for inputs x is given by the conditional density p(t|x)”.

Generally, artificial neural networks are considered as semi-
parametric or non-parametric models for data analysis, see
e.g., Gaudart et al. [6], and the references therein.

Neural networks have developed a special type of learn-
ing (Hebbian learning) to capture the essential characteris-
tics (main directions) of the data. Quite a lot of research
was needed to find out, what really the Hebbian learning is
yielding.

Realization of the method of principal components in the
framework of Hebbian learning was the subject of many in-
vestigations, (see, e.g., the papers by Oja, Sanger et others).
Recently, a critical discussion of the approaches has been pub-
lished by Nicole [11]. Our opinion is that the algebraical
method, as presented e.g., in Jolliffe [7], is many times faster
and yields univocal results (see also G. Bazan [2]).

Instead of the traditional Hebbian approach we formulated
the task in terms of approximation of the data. A simple
feed-forward neural network, the multi-layer perceptron, was
used. The network had as target just the data presented at
the input. The number of neurons in the hidden layer was
put equal to H, the number of the desired latent variables (in
our case, this was H = 6).

The applied perceptron had 3 layers: the input layer, the
hidden layer and the output layer. The layout of the network
was: 13 – 6 – 13. This means, there were
◦ d = 13 neurons at the input,
◦ H = 6 neurons in the hidden layer,
◦ K = d = 13 neurons at the output.

The hidden layer produced 6 derived variables z1, . . . , z6.
They acted as input to the third (output) layer who’s task
was to reproduce from the z’s the target, which was again
the input vector.

Let us mention that the implementation in Netlab [9],
which was used for our calculations, puts obligatorily in the
second layer of the perceptron the ’tanh’ activation function,
which makes that all z’s are contained in the interval (-1,1).

We have declared for the output layer the ’linear’ activation
function.

Let ẆH×d and Ẅd×H denote the weights of the hidden
and the output layer appropriately.

The neurons of the hidden layer perform a transformation
that maps the input data into a feature space RI H . For a
given input vector t = [t1, . . . , td]T ∈ RI d we obtain a vector of
derived variables/features z = [z1, . . . , zH ]T ∈ RI H calculated
as

zh = tanh(

d∑
j=1

ẇhjtj + ḃh), h = 1, . . . , H. (10)

The derived variables z = [z1, . . . , zH ]T serve as base to
construct d another variables y1, . . . , yH approximating the
original variables t1, . . . , tH . This is done using the formula

yk =

H∑
h=1

ẅkhzh + b̈k, k = 1, . . . , d.

The formula above, by analogy with model [4], may be
written also in a vector-matrix notation (y = [y1, . . . , yd]T )

yd×1 = Ẅd×HzH×1 + b̈d×1. (11)

4. Results

The analysis was carried out using standardized data. This
means that the covariance matrix was equal to the correlation
matrix of the data. In such a case the trace of S equals to
the number of analyzed variables:

trace(S) =

d∑
j=1

s2
j =

d∑
j=1

1 = d.

Our data contained d = 13 variables. Their names may be
read in Figure 1 and in Tables 2–5. The variables character-
ize three legs notified in the spider-plot describing an ORF
(Open Reading Frame in a chromosome) [5, 1, 12] . Each
leg is characterized by 4 variables. An additional variable,
length of the ORF, is introduced as variable no. 10. The
data contained a total N = 3300 ORFs.

After an analysis of the scree graphs shown in Figure 2 and
3 we decided to seek for H = 6 hidden factors, alias latent
variables, alias PPCs.

4.1. Traditional PCA

To do the PCA analysis, we calculated firstly the eigenvalues
λ1, . . . , ..., λd and the corresponding eigenvectors a1, . . . , ad of
the correlation matrix S of our data.

By use of Property 2 we were then able to say, how much
of total variance of the original variables is reproduced by
subsequent PC’s. This is shown in Table 1.

Table 1. Reproduction of total variance by 2, 3, 5, 6, 7 and
10 principal components.

PC no. j 2 3 5 6 7 10

eigenvalue 3.3 1.7 0.72 0.66 0.39 0.21
fraction sum 0.55 0.68 0.83 0.88 0.91 0.98

One may see that 6 principal components reproduce 88%
of total variance of the data.

One might ask also, for each variable separately, how much
of individual variance (for each variable) is explained by sub-
sequent PC’s. We may calculate this using Property 1 and
considering only the diagonals of the respective matrices. The
details of individual reproduction, when using models with j
= 5, 6, and 7 PC’s, are shown in Table 3.

On the basis of the derived eigenvectors {aj} we calculated
the PC’s by use of formula (1).

The meaning (interpretation) of the obtained PC’s may
be obtained by looking at their correlations with the stan-
dardized original variables t∗1, . . . , t

∗
d. In the case, when the

eigenvectors were obtained from the correlation matrix, the
respective correlations may be found by a simple re-scaling of
the obtained eigenvectors ([7], p. 25).
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In Table 2 we show the correlations of the first 6 PC’s with
the standardized observed variables t∗ (i.e. 0–centered and
with unit variances). Each column rj was obtained simply as

rj =
√

λj aj , j = 1, . . . , 6.

Table 2. Correlation coefficients {rij}of the first 6 PC’s with
the observed standardized variables t∗1, . . . , t

∗
13.

Variable PC No.

ti ↓ 1 2 3 4 5 6

1. ang1 -0.10 0.71 -0.46 0.08 0.09 -0.44
2. ang2 -0.00 -0.55 -0.17 0.69 -0.26 -0.08
3. ang3 -0.16 -0.49 -0.50 -0.46 -0.37 -0.08
4. x1 0.69 -0.56 -0.09 0.02 0.16 0.33
5. y1 0.48 0.49 -0.65 0.15 0.18 -0.07
6. x2 0.56 -0.61 0.03 0.36 -0.14 -0.24
7. y2 -0.72 -0.11 -0.42 0.39 0.00 0.24
8. x3 -0.20 -0.77 0.05 -0.00 0.38 -0.19
9. y3 -0.26 -0.54 -0.55 -0.38 -0.14 -0.02
10. leng 0.80 -0.04 -0.14 -0.28 0.05 0.09
11. rho1 0.84 0.05 -0.43 0.11 0.17 0.16
12. rho2 0.82 -0.19 0.30 -0.10 -0.12 -0.34
13. rho3 0.45 0.61 0.07 0.09 -0.47 0.19

On the basis of the correlation coefficients shown in Table 2,
we were not able to attach any interesting meaning to the
derived PC’s.

4.2. Probabilistic principal components

After analysis of residual variances shown in Fig. 3, we have
fixed H = 6 latent variables. The corresponding probabilistic
model was estimated using formulae (5), (6) and (7).

One might ask again, how much of total variance is repro-
duced by the constructed latent variables. The answer may be
read from Table 3. exhibiting the reductions obtained when
using H = 5, 6 and 7 principal components (PC’s) or latent
variables (PPC’s).

The values in the columns of Table 3 were obtained as

H∑
j=1

diag(λj aj aT
j ), for PCA,

H∑
j=1

diag(w̃j(H) w̃T
j(H)), for PPCA.

One may see in Table 3 that the probabilistic principal
components extract about 10% less of common structure as
this is done by ordinary principal components. This is no
surprise.

The estimated matrix WML(6) – obtained from formula
[6] was subjected to rotation varimax. The rotated matrix is
shown in Table 4.

Looking at the matrix W in a coarse way (i.e. looking only
at the loadings |wij | > 0.30) one may state that the matrix
exhibits a particular structure: The derived variables may be
split into three pairs headed in Table 4 as: ’1.leg’, ’3.leg’,

Table 3. Reduction of variance of individual variables. Part
of total variance reproduced by 5, 6, 7 ordinary principal
components and 5, 6 and 7 PPC’s. One may notice that
PPCA reproduces a smaller part of total inertia then the
ordinary PCA.

Original PC No. PPC No.

variable 5 6 7 5 6 7
1 ang1 0.74 0.94 0.94 0.66 0.81 0.83
2 ang2 0.88 0.89 0.93 0.72 0.76 0.80
3 ang3 0.86 0.87 0.88 0.71 0.74 0.77
4 x1 0.83 0.93 0.94 0.76 0.84 0.86
5 y1 0.94 0.95 0.95 0.82 0.85 0.87
6 x2 0.83 0.89 0.89 0.75 0.80 0.82
7 y2 0.85 0.90 0.91 0.75 0.81 0.82
8 x3 0.77 0.81 0.91 0.67 0.71 0.78
9 y3 0.82 0.82 0.83 0.71 0.73 0.74
10 leng 0.74 0.75 0.85 0.68 0.70 0.76
11 rho1 0.94 0.96 0.97 0.84 0.88 0.90
12 rho2 0.82 0.93 0.94 0.75 0.84 0.85
13 rho3 0.81 0.84 0.94 0.68 0.73 0.79
sum/13 0.83 0.88 0.91 0.73 0.78 0.81

and ’2.leg’. Each pair is mainly composed by 4 observed vari-
ables describing one leg of the spider-plot (see [5, 12, 1] for
description of the observed data and the construction of the
spider-plots).

Thus, e.g., the first two columns are spanned mainly by the
(original) variables x1, y1, ang1 and rho1, which are just the
variables describing the first leg of the spider-plot. It appears
that all these four variables are necessary and bear important
information; they have the main shares in the derived PPC’s.
However, also ’length’ (variable no. 10) has a big share in the
first PPC.

The split into the 3 double factors is not ideal: we have
looked only at the loadings |wij | > 0.30). Concerning the first
PPC (’1.leg’), also x2, y2 and rho2 have some minor shares
in it. This might mean that in fact the derived PPC’s, al-
beit formally orthogonal, share among them some additional
intrinsic information.

4.3. Neural networks

As described in Section 3, we have applied a multilayer per-
ceptron in the 13–6–13 layout. It had a ’tanh’ activation
function in the hidden layer and a ’linear’ activation func-
tion in the output layer. We have carried out the calculations
using Netlab [10].

The neural network needed about 3000 epochs (presenta-
tions of the data matrix) to get stabilized parameters. The
derived matrix Ẇ is shown in Table 5. All weights {ẇij}
were multiplied by 10.

It was a big surprise to us to obtain, by such a standard and
simple tool as the perceptron, results very similar to those,
obtained by a sophisticated method – as the PPCA with ro-
tation varimax is.

To obtain a comparable index exhibiting how much of ori-
ginal variance can be reduced when using the neural network
model with 6 neurons in the hidden layer, we have defined
such index as the squared ratio of the Frobenius norm of T,
the observed data matrix, in the numerator, and the Frobe-
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Table 4. PPCA. Matrix W expressing 6 latent variables for
the yeast genome data. The presented matrix was obtained

from rotated matrix UH

√
(ΛH − σ2

MLI), H = 6.

1.leg 1.leg 3.leg 2.leg 3.leg 2.leg %

ang1 -.08 .84 .07 -.18 -.21 .14 .81
ang2 .03 -.10 -.08 .83 .13 .17 .76
ang3 .00 -.06 -.85 .06 .11 .02 .74
x1 .72 -.37 -.09 .28 .15 -.28 .84
y1 .58 .67 .06 -.02 -.27 .02 .85
x2 .30 -.17 -.04 .69 .16 -.42 .80
y2 -.21 .08 -.17 .20 .14 .82 .81
x3 -.04 -.27 -.20 .24 .74 -.01 .71
y3 .05 -.04 -.79 .05 .27 .17 .73

leng .65 -.01 -.08 -.06 -.14 -.50 .70
rho1 .85 .21 .04 .14 -.16 -.24 .88
rho2 .29 -.10 .09 .21 -.05 -.83 .84
rho3 .15 .12 .24 -.05 -.77 -.19 .73

nius norm of the predicted data matrix Y obtained by for-
mula [11] – in the denominator (the original data matrix T
was standardized to mean 0 and unit variances). Surprisingly
enough, this squared ratio appeared to be equal to 0.8838, a
value very similar to that obtained by classical PCA.

5. Discussion and closing remarks

We got results interesting for several reasons:

1. It was confirmed, that principal components (PC’s) ex-
tract too much of variability of the data set (which means,
that the PC’s account some random effects as systematic
effects).

2. The new features (latent variables, PPC’s), derived from
the observed variables, have a very clear and interesting
interpretation. The original 13 variables may be repre-
sented by 6 derived variables, called latent variables or
factors. These factors appear grouped in pairs. Each pair
is spanned by 4 original variables, having an interesting
interpretation.

3. It was stated that multi-layer perceptrons may be used
for modelling of the data, reduction of dimensionality and
finding latent factors. This ability was put recently in
doubt by Nicole [11].

In particular, it was interesting to state, that the weights
of the perceptron provided a kind of parsimonious loadings
of the observed variables considered as a function of the
hidden variables. This, to our knowledge, was not noticed
before.
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