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A B S T R A C T

The distinct structure and universality of the standard genetic code (SGC) have fascinated the scientists ever
since the first amino acid assignments were discovered. There are several hypotheses trying to explain the origin
and evolution of this code. One of them postulates that the SGC evolved to minimize harmful effects of amino
acid replacements in proteins, caused by mutations and translational errors. Many investigations concerning this
hypothesis have already been carried out, but they were focused mainly on the consequences of single-point
mutations. Therefore, we decided to check the influence of other types of mutations, i.e. insertions and deletions,
on the robustness to amino acid replacements of the SGC. Such mutations cause shifts in the reading frame
during the translation process which result in more harmful consequences in coded proteins than in the case of
single-point mutations. We applied a multi-objective optimization algorithm to find the best and the worst
genetic codes, regarding their robustness to both single-point and frameshift mutations, for various amino acid
properties. Then we compared the features of the found codes with the properties of the standard genetic code.
The results show that the SGC is not fully optimized for minimizing the effects of frameshift mutations but it is,
nevertheless, much closer to the best solutions than to the worst ones. It implies that a certain tendency to
minimize the costs of amino acids replacements resulting from various kinds of mutations is present in the
standard genetic code.

1. Introduction

The origin and evolution of the standard genetic code (SGC) still
remain a mystery, even though the code has been studied since the
1960s, when the first assignments of amino acids to codons were dis-
covered (Khorana et al., 1966; Nirenberg et al., 1966). Scientists are
puzzled by its universality among all the organisms on Earth, especially
when they consider the huge number, about ∙1.51 1084 (Schönauer and
Clote, 1997), of all possible alternatives which encode 20 amino acids
and the stop translation signal by means of 64 codons. Therefore, Crick
(1968) suggested that the SGC was selected due to various factors, in-
cluding random ones, from all the possibilities and then it was fixed to
avoid introducing new changes which could cause misreading of codons
in the already established protein sequences. However, certain reg-
ularity has been observed in the structure of the SGC. The amino acids
with similar physicochemical properties are assigned to similar codons,
which implies that the SGC has a degree of robustness to the effects of
mutations and errors occurring during protein synthesis and therefore
the code may have evolved to minimize such influences on created
proteins (Sonneborn, 1965; Woese, 1965). This hypothesis was tested

by many researchers (Ardell, 1998; Ardell and Sella, 2001; Di Giulio,
1989a; Di Giulio and Medugno, 1999; Epstein, 1966; Freeland and
Hurst, 1998a, b; Freeland et al., 2000, 2003; Gilis et al., 2001; Goldberg
and Wittes, 1966; Goodarzi et al., 2005; Haig and Hurst, 1991;
Mackiewicz et al., 2008), who found the existence of the error mini-
mization tendencies in the SGC. Moreover, Böażej et al. (2018a)
showed the error-minimization properties of the codon block structure
of the SGC regardless of the amino acid assignments. It was also pointed
out that this structure could have been shaped by the translational in-
accuracy (Błażej et al., 2019b) and could have evolved from the initial
ambiguity in assignments of codons to amino acids (Barbieri, 2015;
Błażej et al., 2019b). On the other hand, other analyses, especially those
applying optimization algorithms, revealed that the SGC is not as op-
timized as it was previously assumed (Błażej et al., 2018b, 2016; de
Oliveira et al., 2015, 2018; Judson and Haydon, 1999; Massey, 2008;
Novozhilov et al., 2007; Santos and Monteagudo, 2011, 2017; Wnętrzak
et al., 2018). Moreover, detailed analyses of natural and theoretical
alternative genetic codes showed that they are more robust to amino
acid replacements than the SGC (Błażej et al., 2019a, c). In agreement
with that, it was postulated that the minimization of mutation errors by
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the SGC was not necessary because they could have been adjusted by
the direct optimization of the mutational pressure around the already
established genetic code (Błażej et al., 2017, 2015; Dudkiewicz et al.,
2005; Mackiewicz et al., 2008).

There are also studies suggesting that the codon-amino acid as-
signments in the SGC did not emerge under the selection for error
minimization but the observed robustness to single changes in codons is
rather a side effect of other mechanisms, e.g. the increasing diversity of
amino acids subsequently added to the expanding code (Higgs, 2009;
Sengupta and Higgs, 2015; Weberndorfer et al., 2003), the duplication
of genes for tRNAs and aminoacyl-tRNA synthetases (Cavalcanti et al.,
2000, 2004; Koonin, 2017; Koonin and Novozhilov, 2017; Massey,
2016; Stoltzfus and Yampolsky, 2007) or the evolution of biosynthetic
pathways of amino acids (Di Giulio, 1997, 1999; Di Giulio, 2004, 2008,
2016, 2017, 2018; Facchiano and Di Giulio, 2018; Wong, 1975; Wong
et al., 2016). Still, all of the SGC origin theories have been criticized for
not being sufficient to explain all SGC features on their own (Koonin
and Novozhilov, 2017; Kun and Radvanyi, 2018).

Because of the lack of agreement concerning the mechanisms of the
SGC origin and evolution, the subject is still under investigation.
However, most of the published results concerning the investigation of
the error minimization property of the SGC are focused solely on the
effects of single-point mutations or simple misreading of codons during
translation, neglecting the consequences of shifts in the reading frame,
caused by deletions and insertions or just slippage of ribosomes. Such
mutations and errors most often result in non-functional proteins when
all the subsequent codons in the coding sequence are changed.
Therefore it is interesting to study the robustness of the SGC to the
frameshifts. Several authors have already investigated this subject from
different points of view.

Seligmann and Pollock (2004) have observed that in many organ-
isms the codons with greater potential to form the stop translation
codons after a shift of the reading frame show a greater usage and bias
in their favour among synonymous codons. It can decrease energy and
resource waste on non-functional proteins. Itzkovitz and Alon (2007)
concluded that the SGC is nearly optimal regarding the minimization of
the effect of translational frameshift errors in terms of encountering a
stop codon in the middle of the frame-shifted protein coding sequence.
Such codons appeared in the SGC-translated sequence much earlier
than in the case of over 99% of the tested alternative theoretical codes
with the codon block structure resembling that of the SGC. A similar
approach was taken by Kumar and Saini (2016) who investigated the
frameshift robustness of the SGC by applying a fitness function quan-
tifying the probability with which a faulty peptide translation would be
terminated, using the amino acid profile obtained from the proteome of
Escherichia coli. They determined that even though the SGC structure
seems regular and specific, it is sub-optimal for robustness to frameshift
mutations, which indicates that this feature of the code has likely not
been selected for. However, after applying a fitness function which
combines the robustness to point mutations and frameshifts as well as
the parallel coding ability, based also on the coding regions of E. coli,
the authors came to the conclusion that the SGC is significantly better
than other genetic codes because they found only a few theoretical
codes which outperform the SGC in terms of this combined fitness.

The robustness to frameshifts was also tested by Geyer and Madany
Mamlouk (2018) who investigated the changes in polarity of the en-
coded amino acids after frameshifts. However, the authors used another
type of the fitness function. They did not just look for stop codons in
frame-shifted sequences, but they summed up all possible changes in
the polarity of amino acids encoded by codons before and after a fra-
meshift. Their conclusion was that the SGC is efficient in minimizing
the effects of frameshift in terms of conserving the polarity of amino
acids, although better codes can be found. They also stated that it be-
comes significantly more difficult to find codes better than the SGC
regarding not only the robustness to frameshifts but also to point mu-
tations and translational errors. However, the deduction was based on

the comparison of the SGC with only one million random theoretical
codes, which does not seem a sample large enough to get reliable
conclusions. For that reason, we decided to use a similar fitness func-
tion for testing the SGC robustness to frameshifts, but to avoid com-
paring the SGC with random alternatives, we used an evolutionary al-
gorithm to find the codes which minimize and maximize the fitness
function, to get a bigger picture of the SGC properties in relation to the
whole space of theoretical possibilities. We also found the best and the
worst codes regarding the robustness to point mutations. In both cases
we considered two of the amino acid properties, polarity and molecular
volume. Moreover, in order to avoid assigning any arbitrary weights to
the two mutation types in the objective function, we used a two-criteria
optimization algorithm to find the codes optimized simultaneously for
both types of mutations and errors, i.e. nucleotide substitutions and
frameshifts. We showed that in all the described cases it is easy to find
many theoretical codes that minimize the given fitness function better
than the SGC, which itself is quite robust, considering the space of all
the theoretical alternatives. The results are also dependent on the
amino acid property. The SGC seems much better optimized to changes
in polarity than molecular volume of amino acids.

2. Methods

2.1. Models of genetic codes

We searched for the optimal solutions in two sets of theoretical
genetic codes, i.e. search spaces. The first one, called the codon block
structure model (CB), consists of the codes characterized by the same
codon block structure as the SGC but with permuted assignments of
amino acids to blocks of codons. The second set, called the unrestricted
structure model (US), includes all possible codes which encode 20
amino acids without any further restrictions on the structure. In both
models we assumed the three stop translation codons fixed as in the
SGC.

2.2. Evolutionary algorithms

As our method of finding the optimal theoretical codes, we chose
the Evolutionary Algorithms (EAs) (Sivanandam and Deepa, 2008).
Their simplicity, flexibility, and robustness to changing conditions
make them a very useful tool in solving optimization problems, espe-
cially when analytic methods are not feasible due to the properties of
the search space.

EAs can be used in both single- and multi-objective optimization
problems. For our purposes we needed a procedure which could be
applied to both cases and was easily adapted to the genetic code opti-
mization task. Therefore, we chose the Strength Pareto Evolutionary
Algorithm (SPEA2) (Zitzler et al., 2002) which was crafted mainly for
the multi-objective optimization and finding an approximation of the
set of optimal solutions. We developed a few versions of this algorithm
customized to our genetic code optimization tasks and implemented
them in the C++ language. These algorithms were also applied in our
previous studies on the genetic code optimality (Błażej et al., 2018b,
2016; Wnętrzak et al., 2018).

To start an Evolutionary Algorithm, a population of individuals
randomly chosen from the search space is necessary. These potential
solutions are evaluated according to the fitness function which assesses
their quality, and then they are specifically modified by the genetic
operators in order to produce new individuals from the search space for
assessing. In every step of the algorithm a new generation of solutions is
created by the selection procedure, which chooses most often high
quality individuals from the previous generation. Then the modifica-
tion, fitness evaluation and selection are applied again and repeated
until a stopping rule is activated or the obtained solutions become
stable (Sivanandam and Deepa, 2008).

Depending on the considered search space, problem-specific genetic
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operators were either adapted from the ones already described in the
literature or constructed anew (Błażej et al., 2018b, 2016; Wnętrzak
et al., 2018). Under the CB model, the genetic codes were represented
by vectors of 21 characters corresponding to 20 amino acids and the
stop translation signal assigned to established codon blocks. As the
mutation operator we used a simple exchange of the amino acids as-
signed to two randomly selected codon blocks. For the crossover op-
erator, we adapted the Position Based Crossover (POS) operator
(Syswerda, 1991). According to this operator, a determined number of
amino acids of the parental code P1 is randomly selected and assigned to
the corresponding codon blocks in the offspring. The remaining codon
blocks in the offspring have amino acids assigned according to the
codon blocks in the parental code P2, with optional changes if a given
amino acid is already present in the offspring. Under the US model, the
genetic codes were represented by vectors of 64 elements corre-
sponding to amino acids assigned to the respective codons. As the
mutation operator we used a procedure, which selects two codons at
random, and for the amino acids encoded by these codons, swaps all the
codons originally assigned to these amino acids. Furthermore, we had
to propose a different crossover operator than in the case of the CB
model. We developed a procedure, which starts by copying the parental
codes P1 and P2 onto the offspring O1 and O2. Then an amino acid is
randomly selected. If this amino acid is encoded by different codons in
P1 and P2, the assignments of these codons are exchanged within O1 and
O2, thus creating new codes with structures inherited from the parental
codes.

For choosing individuals to next generations, we applied binary
tournament selection (Blickle and Thiele, 1996), which means that out
of two randomly chosen solutions only one was transferred to the next
generation, with the probability directly proportional to its fitness
value.

The most important part of each Evolutionary Algorithm is the in-
corporation of a relevant fitness function which describes how good a
given individual is. It allows the selection for choosing the most pro-
mising solutions and thus guides the search for the optimal one
(Sivanandam and Deepa, 2008). The calculation of the fitness function
values is based on the values of the objective functions, which quantify
the optimality of the solutions regarding one respective criterion. In the
case of the single-objective optimization, the fitness function is often
the same as the objective function since there is only one criterion of
optimality considered. However, in the multi-objective optimization,
there is a vector of objective functions values assigned to every in-
dividual in the population and the fitness value is calculated separately.
In the SPEA2 algorithm, the fitness function is based on the Pareto
dominance concept, which states that the solution S1 dominates the
solution S2 if no component of S1 is worse than the corresponding
component of S2 and at least one component of S1 is better than the
respective one of S2 (Coello Coello et al., 2007). The components in our
case are the values of the objective functions. In order to calculate the
fitness values, first we assign to each individual i a strength value S i( )
representing the number of solutions that it dominates. Then the raw
fitness R i( ) is calculated, according to the formula:

∑=
∈ + ≺

R i S j( ) ( )
j P P j i¯ ,t t

where +P P̄t t is the set of all the individuals from the current population
Pt and the archive set P̄t of the best solutions up-to-date, and ≺j i means
that the individual i is dominated by the individual j. Additionally, we
incorporate the density information to discriminate between in-
dividuals with identical raw fitness values. Thus, for each individual,
the distances in the objective space to all the individuals from +P P̄t t are
calculated and stored in a list sorted in increasing order. Then, for each
solution i we choose the 5th element of the list, denoted as σi

5, and we
calculate the corresponding density D i( ), according to the formula:

=
+

D i
σ

( ) 1
2i

5

The final fitness value F i( ) of the individual i is the sum of R i( ) and
D i( ) (Zitzler et al., 2004). The fitness of an individual is computed
drawing upon the number of individuals dominated by the given in-
dividual and the number of individuals dominating the given individual
(Zitzler et al., 2002).

2.3. The objective functions

In order to determine the robustness of a given genetic code to
amino acid replacements, we used two types of objective functions, one
for each type of mutation. Similarly to other authors (de Grey, 2005; de
Oliveira et al., 2015; Freeland and Hurst, 1998a; Haig and Hurst, 1991;
Santos and Monteagudo, 2010), we calculated the sum of squared dif-
ferences between an amino acid index values representing a given
property of amino acids encoded by their original codons and the ones
encoded by the mutated codons. In the case of nucleotide substitutions,
the mutated codons differed in only one codon position from the ori-
ginal one, which means that we considered 576 pairs of amino acids (64
codons times nine possible single nucleotide substitutions). In the case
of insertions and deletions, the mutated codons resulting from the shifts
of the reading frame were considered, thus we calculated the differ-
ences between amino acids encoded by 512 pairs of codons (64 codons
times four possible nucleotides in the third codon position after +1
frameshift plus 64 codons times four possible nucleotides in the first
codon position after -1 frameshift). This type of objective function
seems to be especially relevant for assessing the damage in proteins
caused by frameshifts, because in the case of such mutations and errors,
all the codons in the sequence are changed and the chosen objective
function takes into account the sum of all possible changes in encoded
amino acids resulting from a shift of the reading frame.

For this study, as the indices quantifying amino acid properties we
chose a polarity scale (Mathew and Luthey-Schulten, 2008) and mole-
cular volume values (Grantham, 1974), as it is suggested that the
conservation of these properties in proteins was important in the evo-
lution of the genetic code (Di Giulio, 1989a, b; Facchiano and Di Giulio,
2018; Freeland and Hurst, 1998a; Haig and Hurst, 1991; Santos and
Monteagudo, 2010). The values of the respective amino acid indices are
presented in Table 1.

From the given amino acid index values we computed a matrix of

Table 1
The values of the amino acid indices representing the polarity (Mathew and
Luthey-Schulten, 2008) and molecular volume (Grantham, 1974) of amino
acids.

Amino acid Polarity Molecular volume

Ala 6.5 31
Arg 8.6 124
Asn 9.6 56
Asp 12.2 54
Cys 4.3 55
Gln 8.9 85
Glu 13.6 83
Gly 9.0 3
His 7.9 96
Ile 5.0 111
Leu 4.4 111
Lys 10.2 119
Met 5.0 105
Phe 4.5 132
Pro 6.1 32.5
Ser 7.5 32
Thr 6.2 61
Trp 4.9 170
Tyr 7.7 136
Val 6.2 84
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squared differences between these values and then standardized the
matrix by dividing each element by the maximum element of this ma-
trix. Hence, we could compare the results for the different amino acid
indices.

The formula for calculating the objective function value for a given
genetic code may be presented as follows:

∑= −
< > ∈

F code p c p c( ) [ ( ) ( )] ,i c c C i i1 2
2

1, 2

where: F code( )i is the value of the objective function for a given genetic
code (code) and objective i, C is the set of all pairs of codons before and
after mutation, c1 and c2 are codons, p c( )i 1 and p c( )i 2 are the values of
the amino acid index i for the amino acids encoded by the codons c1 and
c2, respectively. Depending on the set of pairs of codons, we were able
to calculate the objective functions values for point mutations Fsub as
well as insertions and deletions F fr .

The aim of the optimization procedure was to minimize or maximize
all the considered objective functions in order to find the genetic codes
with the smallest or the largest costs of amino acid replacements, re-
garding given amino acid properties.

2.4. Measures of distances between codes

To assess the level of optimality of the SGC in relation to the best
(minimizing amino acid replacements costs) and the worst (maximizing
amino acid replacements costs) solutions found by our algorithm, we
used a few analogous measures based on the Euclidean distances be-
tween the vectors of the objective functions values for the given genetic
codes (Błażej et al., 2018b). In the case of the single-objective optimi-
zation, we applied the ms measure:

=m db
dbw

* 100,s

where db is the Euclidean distance between the SGC and the best so-
lution and dbw is the Euclidean distance between the best and the worst
solution.

To analyse the results of the multi-objective optimization, we used
two measures, mmin and mmean:

=
+

m db
db dw

* 100,min
min

min min

where dbmin is the minimum Euclidean distance between the SGC and
the Pareto set of the best solutions, whereas dwmin is the minimum
Euclidean distance between the SGC and the Pareto set of the worst
solutions:

=
+

m db
db dw

* 100,mean
mean

mean mean

where dbmean is the mean Euclidean distance between the SGC and the
Pareto set of the best solutions, whereas dwmean is the mean Euclidean
distance between the SGC and the Pareto set of the worst solutions.

All three measures may take values in the range from 0% to 100%.
The values below 50% indicate that the SGC is closer to the group of
codes minimizing amino acid replacements costs rather than to the
group maximizing these costs. The values above 50% mean that the
SGC is closer to the latter group.

2.5. Simulation procedures

In order to find the optimal theoretical genetic codes, regarding the
robustness to amino acid replacements, we run a few types of simula-
tions using adequate versions of our customized algorithm. However,
the main parameters were set the same for each type of the simulation
and the main factor that made them different from each other was the
number of optimization criteria and the kind of the objective function.
We decided to consider the following cases:

1) single-objective optimization regarding polarity, minimizing and
maximizing F fr ,

2) single-objective optimization regarding molecular volume, mini-
mizing and maximizing F fr ,

3) single-objective optimization regarding polarity, minimizing and
maximizing Fsub,

4) single-objective optimization regarding molecular volume, mini-
mizing and maximizing Fsub,

5) two-objective optimization regarding polarity, minimizing and
maximizing both Fsub and F fr ,

6) two-objective optimization regarding molecular volume, mini-
mizing and maximizing both Fsub and F fr .

For all types of simulations we started with a population of 2800
randomly chosen codes and the same number of codes in each con-
secutive generation. The Pareto set consisted of 700 individuals. Each
simulation was run up to 3000 steps and was repeated 20 times in the
case of the multi-objective optimization and 50 times for the single-
objective optimization. We applied the objective functions Fsub and F fr

described earlier. In each step of the simulation the operators of mu-
tation and crossover were applied to, respectively, 90% and 30% of the
individuals in the population.

In the Results and Discussion section, when referring to the Pareto
set obtained in any kind of simulation, we mean a combined set of all
the optimized codes from the repeated runs, i.e. ∙ =20 700 14,000 codes
from the multi-objective optimization and ∙ =50 700 35,000 codes from
the single-objective optimization.

3. Results and discussion

3.1. Single-objective optimization

First we applied the single-objective version of our algorithm to find
the genetic codes optimized regarding nucleotide substitutions and
frameshifts separately (cases 1–4). The simulations were carried out for
two amino acid properties, polarity and molecular volume. After
finding the best and the worst theoretical codes regarding given cri-
teria, we calculated the Euclidean distances between the standard ge-
netic code and these theoretical alternatives. Then we used them to
compute the values of the measure ms, which describes how much
optimized the SGC is, compared to the best and the worst possible so-
lutions. The results are presented in Table 2.

All the calculated values of the ms measure are smaller than 50%,
which means that in the case of the single-objective optimization re-
garding the polarity or the molecular volume of amino acids, the SGC is
definitely closer to the theoretical codes minimizing the costs of amino
acid replacements than to the codes maximizing these costs. However,
the exact ms values clearly depend on the considered amino acid
property, the type of the search space of theoretical codes, and the type
of mutation. We found that for both kinds of mutations, the SGC is
much closer to the best solutions regarding the polarity property than in
the case of the molecular volume. It suggests that the polar properties of
amino acids were more important in optimization of the SGC than their
size. This assumption seems reasonable taking into account that po-
larity is a parameter which better differentiates amino acid functions.
Our results do not contradict those of other authors (Haig and Hurst,

Table 2
The values of the ms measure [%] for the SGC, calculated under the CB and US
models regarding the robustness to point mutations and frameshifts.

AA index Point mutations Frameshifts

CB model US model CB model US model

Polarity 8.04 7.69 12.28 9.91
Molecular volume 31.5 16.71 43.76 19.94
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1991), who tested the genetic code optimality regarding the robustness
to changes in the polarity and the molecular volume properties of en-
coded amino acids, caused by nucleotide substitutions.

The ms values calculated for the codes with the unrestricted struc-
ture are smaller than those for the codes with the blocks of codons the
same as in the SGC. The differences are not so big in the case of the
optimization regarding the polarity. The ms values under the CB model
are only 1.05 and 1.24 times bigger than the respective values under
the US model. In contrast, the difference is considerable for the opti-
mization regarding the molecular volume. The ms values under the CB
model are 1.89 and 2.19 times bigger than the values under the US
model. However, the differences between these two models result from
the fact that in the larger, unrestricted space it is possible to find more
codes with large values of the objective functions, which leads to the
increase of the denominator in ms and, consequently, smaller values of
the ms measure.

The differences in the ms values are also evident when we compare
the results for frameshifts and point mutations. The respective values
regarding the optimization for frameshifts robustness are slightly larger
(1.19–1.53 times) than the values obtained from the optimization in
regard to robustness to point mutations. It suggests that the SGC is more
robust to the changes in proteins caused by single nucleotide substitu-
tions than to the changes resulting from the shifts of the reading frame.

3.2. Two-objective optimization

After testing the robustness of the SGC to amino acid replacements
caused by either single-point or frameshift mutations, we decided to
check this error minimizing property for both types of mutations
combined (cases 5 and 6). Similarly to the single-objective optimization
case, we found the best and the worst theoretical codes regarding our
optimization criteria. Each genetic code had two values of the objective
functions assigned. Therefore, we could present the codes as points in
the two-dimensional space (Figs. 1–4). In all cases, the initial popula-
tion of random codes is surrounded from two opposite sides by the
Pareto fronts of best and worst codes. Under the CB model (Figs. 1 and

3), this population is located almost in the centre of the whole space,
while in the case of the US model (Figs. 2 and 4), it is shifted towards
the best codes. It means that the codes, which were generated by the
assignment of 20 amino acids with equal probabilities to at least one of
the 61 codons, can show a tendency to minimize the amino acid re-
placement costs when compared with the extremely bad codes. The

Fig. 1. The values of the objective functions Fsub (horizontal axis) and F fr

(vertical axis) for the SGC (red dot), the best codes (blue dots), the worst codes
(orange dots) and the initial population of random codes for the evolutionary
algorithm (green dots), calculated for the polarity property and among the
codes under the CB model.

Fig. 2. The values of the objective functions Fsub (horizontal axis) and F fr

(vertical axis) for the SGC (red dot), the best codes (blue dots), the worst codes
(orange dots) and the initial population of random codes for the evolutionary
algorithm (green dots), calculated for the polarity property and among the
codes under the US model.

Fig. 3. The values of the objective functions Fsub (horizontal axis) and F fr

(vertical axis) for the SGC (red dot), the best codes (blue dots), the worst codes
(orange dots) and the initial population of random codes for the evolutionary
algorithm (green dots), calculated for the molecular volume property and
among the codes under the CB model.
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most interesting is the position of the SGC. When polarity was included
in the objective function, the SGC was located between the random
population and the best codes (Figs. 1 and 2). When the codes were
optimized in terms of differences in molecular volume of replaced
amino acids, the SGC was located among the random codes regardless
of the genetic code model applied (Figs. 3 and 4). It means that the SGC
is much less optimized in terms of the second property. Nevertheless, in
each case, the SGC is located much closer to the Pareto front of the best
codes than the worst ones. It indicates that the SGC shows a tendency to
minimize amino acid replacements costs but it is not perfect.

To quantify the locations of the SGC in the given space of theoretical
codes, especially in comparison with the best and the worst solutions,
we computed the minimum and mean Euclidean distances between the
SGC and the groups of the best and the worst codes and used them to
calculate the values of the mmin and mmean measures, which describe
how much the SGC is optimized in comparison to the best and the worst
alternatives. The obtained numbers are presented in the Table 3.

All the values are below 50%, which indicates that the SGC is de-
finitely closer to the codes minimizing the effects of amino acid re-
placements caused by different kinds of mutations than to the codes
maximizing these effects. Similarly to the single-objective optimization
case, the SGC seems better optimized regarding the polarity property
(with the mmin and mmean values between 9% and 12%) than the mo-
lecular volume (with the mmin and mmean values between 20% and
41%). Moreover, for the optimization regarding the polarity property,

the extension of the search space does not provide any better results,
the mmin and mmean values calculated under the US model are almost the
same as the respective ones computed under the CB model. However, in
the case of the molecular volume as the objective of the optimization,
there is a significant difference between the respective mmin and mmean

values calculated under both genetic code models. The values under the
CB model are 1.76 and 2 times bigger than the respective ones under
the US model. These facts suggest that, regarding the polarity property,
the robustness levels of the genetic codes with the specific codon block
structure are of the same range as the robustness levels of the codes
without such structural restrictions. However, in the case of the mole-
cular volume, we can find much worse solutions among the codes of the
unrestricted structure than in the group of codes with the codon block
structure as in the SGC.

Comparing the results for single- (Table 2) and two-objective opti-
mization (Table 3), we can sate that the SGC performs worse under the
latter case, when compared with the single optimization for point
mutations. In contrast, the SGC is slightly better under the two-objec-
tive optimization in comparison to conditions, when only frameshift
costs were optimized.

4. Conclusions

In this work we presented the results of our investigation of the
robustness of the standard genetic code to nucleotide point mutations
and frameshifts. By applying an evolutionary algorithm, we found the
codes which minimize and maximize the objective functions under
considered optimization criteria. Thus, the SGC was compared with the
best and the worst alternatives instead of a small group of random
possibilities, which makes our results more reliable and closer to the
reality than other approaches. The main result is that the SGC is close to
the group of codes minimizing the changes in the polarity of amino
acids, caused by nucleotide substitutions, frameshifts, and both types of
mutations simultaneously, but in each of these cases it is possible to find
better alternatives than the SGC, both among the codes of the codon
block structure the same as in the SGC, as well as among the codes of
the unrestricted structure. The SGC is also more robust to amino acid
replacements caused by nucleotide substitutions than to changes in-
troduced by frameshifts. It may be due to the fact that point mutations
occur more frequently than frameshift mutations. However, at the be-
ginning of the genetic code evolution, the translational machinery was
much less accurate and slippages of the proto-ribosome were highly
probable, which could cause the ambiguity of the code (Barbieri, 2015).
It was also proposed that frameshifting could allow the selection of
triplets from ennuplets, i.e. stretches of proto-mRNAs larger than three
bases involved in initial coding at the early stages of the genetic code
evolution (Di Giulio et al., 2014). Therefore, the present structure of the
SGC may reflect this stage and buffer the effects of frameshift muta-
tions. The differences in the performance of the SGC optimized under
point mutations and frameshifts are smaller when we consider changes
in the polarity of amino acids than their molecular volume. However,
for any type of mutation, the structure of the SGC is less robust to the
changes in the molecular volume of amino acids than their polarity,
although it is still closer to the group of the best alternatives than the
worst ones.
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