
BioSystems 210 (2021) 104528

A
0

Contents lists available at ScienceDirect

BioSystems

journal homepage: www.elsevier.com/locate/biosystems

Models of genetic code structure evolution with variable number of coded
labels
Konrad Pawlak, Małgorzata Wnetrzak, Dorota Mackiewicz, Paweł Mackiewicz, Paweł Błażej ∗
Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, Poland

A R T I C L E I N F O

Keywords:
Genetic code
Codon
Amino acid

A B S T R A C T

It is assumed that at the early stage of cell evolution its translation machinery was characterized by high
noise, i.e. ambiguous assignment of codons to amino acids in the genetic code, which initially encoded only
few amino acids. Next, during its evolution new amino acids were added to this code. Taking into account this
facts, we investigated theoretical models of genetic code’s structure, which evolved from a set of ambiguous
codons assignments into a coding system with a low level of uncertainty. We considered three types of
translational inaccuracies assuming a different number of fixed codon positions. We applied a modified version
of evolutionary algorithm for finding the genetic codes that the most effectively reduced the initial uncertainty
in the assignment of codons to encoded labels, i.e. amino acids and a stop translation signal. We examined
codes with the number of labels from four to 22. Our results indicated that the quality of genetic code structure
is strongly dependent on the number of encoded labels as well as the type of translational mechanism. The
more strict assignments of codon to the labels was preferred by the codes encoding more number of labels.
The results showed that a smaller degeneracy of codes evolved from a more tolerant coding with the stepwise
addition of coded amino acids to the genetic code. The distribution of codon groups in the standard genetic
code corresponds well to the translation model assuming two fixed codon positions, whereas the six-codon
groups can be relics form previous stages of evolution when the code characterized by a greater uncertainty.
1. Introduction

The standard genetic code (SGC) is a template according to which
64 codons are assigned to 20 amino acids and the stop coding signal.
Because the number of codons is greater then the number of encoded
labels this coding system is redundant, which means that there exist
codons that encode the same genetic information. These codons are
arranged in codon groups called blocks. They consist of two, three,
four or six codons. Generally, the codons in these groups differ in the
third position. In order to explain this phenomenon, Crick put forward
the wobble hypothesis, which assumes specific interactions between the
first base in a tRNA anticodon and the third base of translated codon in
a transcript (mRNA) (Crick, 1966). He proposed that the base pairing
between two nucleotides in RNAs do not have to follow Watson–Crick
base pair rules, i.e. cytosine–guanine and adenine–uracil, but other
interactions are also possible, i.e. guanine–uracil, hypoxanthine–uracil,
hypoxanthine–adenine and hypoxanthine–cytosine. It was also found
that other modified bases can pair with the typical ones (Murphy and
Ramakrishnan, 2004). This fact has many interesting consequences. For
example, it reduces the number of different tRNA molecules, which are
necessary in protein synthesis. What is more, single point mutations
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that occur in the third codon positions are synonymous, i.e. do not
change the encoded information. It causes that the SGC is to some
extent robust against consequences of nucleotide substitutions.

It should be noted that the wobble rule is just one out of many at-
tempts to explain the characteristic structure of the SGC. This issue and
the properties of the SGC have been hotly debated since the first codon
assignment was deciphered in the sixties of the twentieth century (Kho-
rana et al., 1966; Nirenberg et al., 1966). Nowadays in the academic
world, there exist several hypotheses trying to explain the evolution
of genetic code (Knight and Landweber, 1999; Di Giulio, 2005; Bar-
bieri, 2015; Sengupta and Higgs, 2015; Koonin, 2017; Koonin and
Novozhilov, 2017; Kun and Radvanyi, 2018). They focus on different
features, which would be a driving force of the genetic code emergence.
A popular adaptive hypothesis assumes that the present structure of
the SGC has evolved to minimize the harmful effects of mutations
and mistranslations (Sonneborn, 1965; Woese, 1965; Epstein, 1966;
Goldberg and Wittes, 1966; Haig and Hurst, 1991; Freeland and Hurst,
1998; Di Giulio, 1999; Gilis et al., 2001; Freeland et al., 2003; Goodarzi
et al., 2005). The mathematical analysis of the structure and symmetry
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of the genetic code confirmed its immunity to noise in terms of error-
detection and error-correction (Fimmel et al., 2015; Gumbel et al.,
2015; Fimmel et al., 2018). The computer simulations and optimization
analyzes using genetic algorithms also showed a general tendency of
the SGC to minimize errors, but it did not appear perfectly optimized in
comparison to theoretical codes (Novozhilov et al., 2007; Massey, 2008;
Santos et al., 2011; Błażej et al., 2016; Santos and Monteagudo, 2017;
Wnetrzak et al., 2018; Błażej et al., 2018c, 2019b; Wnetrzak et al.,
2019). What is more, alternative versions of the SGC turned out to be
better at mitigating mutations and translational errors (Błażej et al.,
2018b, 2019a). The structural properties of codon blocks in the SGC
were also studied on the basis of graph theory (Błażej et al., 2018a;
Aloqalaa et al., 2020; Błażej et al., 2020). The analyzes showed that
the majority of codon blocks present in the SGC are optimal according
to the conductance measure. However, the SGC turned out to be far
from the optimum according to this measure. Another approach points
out that the current codon assignments represent relationships between
respective amino acids in biosynthetic pathways, i.e. a newly added
amino acids took over some codons from a respective groups encoding
their precursors (Wong, 1975; Di Giulio, 1997; Di Giulio and Medugno,
1999; Di Giulio, 2008, 2016; Guimaraes, 2011; Wong et al., 2016).

Nevertheless, it should be noted that it is still unclear which factor
played a decisive role in the origin and evolution leading to the present
SGC. It is not inconceivable that its evolution could a combination of
many factors (Koonin and Novozhilov, 2009). This fact opens the field
for improvements of existing models as well as construction of new
ones.

The early genetic code most likely characterized by a high trans-
lational noise, which was further reduced during its evolution (Fitch
and Upper, 1987; Barbieri, 2015; Błażej et al., 2019b). Such a state
remained likely a long time because the last universal common ancestor
of three domains of life, bacteria, archaea and eukaryotes was still a
progenote, with not fully developed translational apparatus (Di Giulio,
2001; Giulio, 2014; Di Giulio, 2020a,b). Likewise, amino acids were
gradually added to the evolving code. This incorporation was driven
by catalytic properties of amino acids functioning in ribozymes (Kun
et al., 2008) and was beneficial because it increased the diversity
of synthesized proteins (Higgs, 2009; Koonin and Novozhilov, 2017;
Sengupta and Higgs, 2015; Weberndorfer et al., 2003).

The order of the amino acid addition into the code was determined
by the minimizing disorders in already synthesized proteins (Higgs,
2009), dependence between the amino acids in terms of precursor-
product in metabolic pathways (Wong, 1975; Di Giulio, 1997; Di Giulio
and Medugno, 1999; Di Giulio, 2008, 2016; Guimaraes, 2011; Wong
et al., 2016) or duplications of genes coding for tRNAs and aminoacyl-
tRNA synthetases (Cavalcanti et al., 2000, 2004; Massey, 2015, 2016;
Koonin, 2017; Koonin and Novozhilov, 2017).

Here, we propose a model of the genetic code evolution including
these two aspects, i.e. the reduction of translational noise and the
stepwise addition of amino acid into the code. We considered three
scenarios of translation inaccuracies in coding systems, namely 𝑀1,𝑀2
nd 𝑀3, assuming a different number of encoded labels. 𝑀1 assumes
hat a given amino acid is coded by codons that have two fixed
ositions identical and differ in one position. In 𝑀2, a given amino
cid is coded by codons with one fixed position identical and differ
n exactly one of other two codon positions from the reference codon.
3 codons coded a given amino acid differ in exactly one any codon

osition from the reference codon. Therefore, 𝑀1 is a special case of
he wobble rule, whereas 𝑀2 and 𝑀3 are its generalizations.

. Methods

.1. Overview

We investigated the evolution of genetic coding systems, which
ncode a different number of amino acids in comparison to the SGC.
2

he evolution of these genetic codes started from a set of ambiguous
ssignments of 64 codons to a fixed number of labels, i.e. amino
cids and stop translation signal, and evolved towards coding systems
haracterized by a low uncertainty of assignments of these labels to the
odons. Similar to the previous approach (Błażej et al., 2019b), we run
ur simulations using a modified version of evolutionary algorithm, in
hich the genetic codes were represented by a population of candidate

olutions (individuals).
The simulation procedure was divided into consecutive steps called

enerations. During each generation two operators, mutation and se-
ection were applied to the population of evolving genetic codes. These
perators were responsible for diversity of this population and guar-
nteed that generally better solutions took part in reproduction for
he next generation. The codes with higher probabilities of encoding
nambiguous genetic information were preferred in reproduction to the
ext generation.

.2. Representation of genetic codes

As in Błażej et al. (2019b), the evolving coding system were repre-
ented by a matrix  = (𝑝𝑐𝑙) consisting of 64 rows and the number of

columns equal to the number of considered labels 𝐿. Values in each row
𝑐 = 1, 2, 3,… , 64 describe a probability distribution function of labels
𝑙 = 1, 2,… , 𝐿 by a given codon. Therefore, the value of the element 𝑝𝑐𝑙
in the matrix  is the probability that a codon 𝑐 encodes a label 𝑙.

All simulations started with a population of individuals, which
were represented by their respective randomly generated matrices  .
In Fig. 1, we depicted a genetic code that encodes 15 labels at the
beginning of simulations. In the heatmap plot, each element of the
matrix is represented by a cell and its brightness corresponds to the
probability that a given codon (in a row) encodes a respective label (in
a column).

2.3. Fitness function

The quality of a given coding system was measured by the fitness
function 𝐹 , which corresponded to the probability that a genetic code
encodes a given set of labels. More specifically, this function was the
sum of the products of probabilities that a given label 𝑙 was encoded
by a codon 𝑐𝑙 (Błażej et al., 2019b). For each label 𝑙, a codon 𝑐𝑙 with
the highest probability to encode 𝑙 was chosen to describe the most
probable coding path 𝐶 = 𝑐1𝑐2 … 𝑐𝑙 in a given code.

In this calculation for every 𝑐𝑙, we also included a codon neighbor-
hood 𝑁(𝑐𝑙), which was a set of codons containing not only the codon
𝑐𝑙 but also several codons that differed from 𝑐𝑙 in one position. These
codons were chosen according to three rules called 𝑀1, 𝑀2 and 𝑀3.
They can be described in the following way:

• 𝑀1 states that codons belonging to a given 𝑁(𝑐𝑙) have two fixed
codon positions identical and differ in any codon position, but
exactly one position is changed;

• 𝑀2 states that codons belonging to a given 𝑁(𝑐𝑙) have one fixed
codon position identical and differ in exactly one of other two
codon positions from the reference codon;

• 𝑀3 states that codons belonging to a given 𝑁(𝑐𝑙) differ in exactly
one any codon position from the reference codon.

For example, the neighborhood for the codon GGG includes:

• GGG, GGA, GGC, GGT for the rule 𝑀1;
• GGG, AGG, CGG, TGG, GAG, GCG, GTG for the rule 𝑀2;
• GGG, AGG, CGG, TGG, GAG, GCG, GTG, GGA, GGC, GGT for the
rule 𝑀3.
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Fig. 1. The heatmap of a genetic code encoding four labels at the beginning of the simulation run under scenario 𝑀1. This is in fact a graphical representation of the matrix
 = (𝑝𝑐𝑙), in which each element 𝑝𝑐𝑙 has ascribed a probability that a codon 𝑐 in a row encodes a label 𝑙 in a column. The probability value of this encoding is represented by
brightness.
Therefore, for a given codon, its neighborhood under the rule 𝑀3
may include the neighborhood 𝑀1 and 𝑀2. These rules represent differ-
ent mechanisms of reading transcripts by the translational machinery,
which induces various types of genetic code redundancy.

In contrast to Błażej et al. (2019b), who analyzed the codes with 21
labels as in the SGC, we considered here coding systems with a different
number of encoded labels starting from the genetic codes with only four
labels and ending with those consisting of 22 labels. For each type of
rules, i.e. 𝑀1, 𝑀2 and 𝑀3, we run simulations with the fixed number
of labels.

2.4. Measure of the quality of genetic codes

In order to describe the structural properties of the genetic codes
represented as the matrix  = (𝑝𝑐𝑙), we applied the entropy

𝐻() = −
64
∑

𝑐=1

21
∑

𝑙=1
𝑝𝑐𝑙𝑙𝑜𝑔(𝑝𝑐𝑙),

which is the sum of Shannon entropy calculated for each row of the
matrix  over the probabilities that a codon 𝑐 encodes a label 𝑙. Thus,
𝐻() corresponds to the multidimensional entropy of independent
distributions. In consequence, we obtained a measure of genetic code
uncertainty because higher values of the entropy indicate that a given
coding system is composed of ambiguous assignments of codons to
labels. Conversely, unambiguous genetic codes are characterized by
lower values of 𝐻().
3

3. Results

We started our investigations with finding the best theoretical ge-
netic codes that encode the selected number of labels 𝐿 = 4, 5,… , 22.
These coding systems emerged under three assumptions 𝑀1, 𝑀2 and
𝑀3 for imprecise translation of transcripts to proteins. All simulations
were run over 40,000 generations and were repeated for different
40 seeds. The conducted simulations provided the best genetic codes
in terms of the fitness function 𝐹 , which describes the ability of a
given coding system to encode a fixed number of labels. After getting
the convergence of the fitness function, we got the optimal coding
structures for each number of labels.

3.1. Structure of genetic codes

Fig. 2 presents the optimal genetic code computed under the 𝑀1
scenario. This coding system encodes 15 labels. As you can see, this
code is characterized by low ambiguity because in their structure
dominate codons with a high probability of encoding a given label. In
this case, each label is encoded with a very high probability by four
codons differing in one position. A weak ambiguity remained only for
four codons, which can encode two, three or four labels.

In Fig. 3, we gathered information about the structure of all genetic
codes produced in the simulations under three types of translational
inaccuracies, i.e. 𝑀1, 𝑀2 and 𝑀3, and regarding the number of encoded
labels 𝐿 from four to 22. Generally, the codes encoding a smaller
number of labels consist of more numerous codons groups for these
labels. For 𝐿 = 4, the most frequent are groups including 14–17 codons.
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Fig. 2. The heatmap of the optimal genetic code with 15 labels, obtained after the simulation run under scenario 𝑀1. This is in fact a graphical representation of the matrix
 = (𝑝𝑐𝑙), in which each element 𝑝𝑐𝑙 has ascribed a probability that a codon 𝑐 in a row encodes a label 𝑙 in a column. The probability value of this encoding is represented by
brightness.
Next, with the increasing number of coded labels, the size of these
groups decreases, e.g. for 𝐿 = 6 and 𝐿 = 7 the most frequent are groups
with 9–11 codons, for 𝐿 = 8 and 𝐿 = 9 those with 6–8 codons, for
𝐿 = 12 and 𝐿 = 14 those with five codons, and for 𝐿 = 15-17 those with
four codons. Interestingly, the groups consisting of two codons begin
to obtain a significant contribution only in the case of codes for the
rule 𝑀1 and encoding more than 9 labels, which makes the distribution
bimodal. For 𝐿 = 22, the two-codon groups exceed the number of four-
codon groups. There is also an additional difference between the codes
optimized under different translational inaccuracies. When 𝐿 >= 18,
the codes for the rule 𝑀2 and 𝑀3 have the most frequent groups
including three codons, which are very poorly represented for the codes
under the restriction 𝑀1, in which the groups with four and two codons
are dominated.

The changes in the size of codon groups are well visible in Fig. 4.
For the genetic codes optimized under the type 𝑀1 of translational
inaccuracy, the contribution of groups with four and two codon in-
creases gradually with the number of coded labels, whereas the groups
comprising other number of codons 𝐶 show the largest frequency for
the specific number of labels 𝐿, e.g. 𝐶 = 5 for 𝐿 = 13, 𝐶 = 6 for 𝐿 = 11,
𝐶 = 7 for 𝐿 = 9 and 𝐶 = 8 for 𝐿 = 8. More numerous groups, i.e. those
with 14 or more codons are the most frequent in the codes encoding
only four labels and become rare in the codes encoding more labels.
The one-codon and three-codon groups are poorly represented in any
codes independently from the number of encoded labels.

For the codes simulated with 𝑀2 and 𝑀3 rules, the gradual increase
with the number of coded labels is also demonstrated by the groups
comprising two codons as for the codes under the 𝑀 rule but their
4

1

contribution is much smaller (Fig. 4). In contrast to the 𝑀1 code, the
positive relationship between the codon group frequency and the coded
labels is revealed by the groups with three codons, whereas four-codon
groups do not show this trend and are the most frequent for 𝐿 = 15 and
𝐿 = 16. Like the codes under 𝑀1 restrictions, other codon groups in the
𝑀2 and 𝑀3 codes has the highest frequency for the specific number of
coded labels, e.g. the groups with the size 𝐶 = 5 for 𝐿 = 12 and 𝐿 = 13,
𝐶 = 6 for 𝐿 = 10, 𝐶 = 7 for 𝐿 = 9 and 𝐶 = 8 for 𝐿 = 8. Similarly, the
groups with 𝐶 >= 14 dominate in the codes with four labels and the
groups with one codon are marginally used.

The most frequent codon groups in the codes optimized under 𝑀2
and 𝑀3 scenarios well correspond to the expected values obtained after
division of the number of all 64 codons by the respective number of
coded labels 𝐿 (Fig. 3). The size of such codon groups concerns the
case when the individual labels are uniformly coded by the same or
similar number of codons. Interestingly, this correspondence deviates
for the codes obtained for the rule 𝑀1 when 𝐿 >= 18. It should be also
noted that the codes under 𝑀1 and 𝐿 = 21, are much more similar to
the codon size distribution in the SGC than the codes fulfilling the other
rules of transnational ambiguity.

3.2. Unambiguity level of genetic codes

In order to compare the studied coding systems, which differed in
the type of translational inaccuracies 𝑀1, 𝑀2 and 𝑀3 and the number
of encoded genetic information, i.e. labels 𝐿, we applied the entropy
𝐻(), which is a good measure of coding ambiguity. In Fig. 5, we
presented the relationship between the entropy and the number of
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Fig. 3. The structure of genetic codes obtained under three types of translational inaccuracies, i.e. 𝑀1, 𝑀2 and 𝑀3, and taking into account the various number of encoded
abels 𝐿, from four to 22. The plots in the left panel show the fraction of codon groups with a given size encoding a specific label for the codes with a fixed number of encoded
abels. This fraction is reflected by the area of circles. The plots in the right panel show selected distributions of codon group sizes. SGC means the standard genetic code. The
ed diamonds indicate expected values obtained after division of the number of 64 codons by the number of coded labels 𝐿.
l
l

encoded labels, calculated under the 𝑀1, 𝑀2 and 𝑀3 assumptions. In
act, the curves show the average of genetic coding entropy calculated
rom all respective simulations. Interestingly, the relationships are not
inear, and the least ambiguity in the assignment of codons to genetic
nformation is reached for different combinations of labels and the
ssumptions on the translational inaccuracy.

The genetic codes optimized under rule 𝑀1 are characterized by
ery high ambiguity in the assignment of small number of labels to
odons and reach the maximum entropy for 𝐿 = 6 (Fig. 5). Next, its
alue drops rapidly and reaches the minimum for the codes with 22
abels. In turn, the entropy of codes simulated with 𝑀2 assumption is
he smallest for four labels. Next it gradually increases slightly drooping
or 11 and 12 labels and again rises to the maximum for 𝐿 = 22. The
ntropy of the codes assuming the translational inaccuracy 𝑀3 is very
igh, when these codes encode four labels. Then, it decreases to the
inimum at 𝐿 = 15 and grows up for the greater number of labels in

hese codes.
5

These complex relationships cause that, for a given number of
abels, the codes with lowest entropy are for different type of trans-
ational inaccuracies 𝑀1, 𝑀2 and 𝑀3 (Fig. 5). The genetic codes

optimized under the 𝑀3 restriction are generally the best possible
solutions in terms of the most unambiguous assignment for very small
number of encoded labels, i.e. four and five, but they turn out to be
worse in comparison to the genetic codes computed under the 𝑀2 and
𝑀3 assumptions for a larger number of labels. For six to 14 labels, the
codes with the lowest entropy are characterized by the translational
inaccuracy of type 𝑀2, whereas for the more labels encoded, the codes
under the rule 𝑀1 show the lowest entropy in comparison to the others.
It should be noted, that the codes with rule 𝑀1 are characterized by the
largest range of 𝐻(), reaching the largest and the smallest entropy
values of all simulated conditions.

4. Discussion

In this study, we performed simulations of genetic code structures

assuming various number of labels encoded by these codes. These labels
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Fig. 4. Relationship between the fraction of codon groups with a given size and the number of labels coded by genetic codes obtained under three types of translational inaccuracies,
i.e. 𝑀1, 𝑀2 and 𝑀3. The data only for selected sizes of codon groups were shown for clarity.
represent amino acids and the stop translation signal. We considered
codes with four to 22 labels. The assumption on the minimum, i.e. four
labels, corresponds to the four-column model for the origin of the ge-
netic code, which stared its evolution just from such a number of amino
acids (Higgs, 2009). The comparison of the simulated codes ranked
according to the number of encoded labels may represent a gradual
6

addition of amino acids into the evolving code. We studied codes up to
22 labels because we took into account not only the classical 20 amino
acids and stop translation signal but also the presence of selenocysteine
or pyrrolysine in some genetic codes (Böck et al., 1991; Srinivasan
et al., 2002).
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Fig. 5. Relationships between the genetic code entropy and the number of labels coded by the genetic codes simulated under three types of translational inaccuracies. The curves
re the result of fitting obtained from Generalized Additive Model for 40 simulations run under different seeds. The gray band represents the 95%-confidence interval.
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The simulation started with codes characterized by ambiguous as-
ignment of codons to the labels and evolved to reduce this uncertainty
measured by the fitness function) under three models of translational
naccuracies 𝑀1, 𝑀2 and 𝑀3. These rules assume various levels of
ranslation imprecision and are defined by a neighborhood to a refer-
nce codon. The model 𝑀3 is the most tolerant and assumes that nine
ther codons can have the same meaning as the reference codon. In rule
2, there are six such codons and in the case of 𝑀1, three additional

odons can encode the same label. The codons differ in one position
ut the number of fixed positions depends on the model.

The models of translational inaccuracies assume that similar codons
ncode a specific amino acid, which is in agreement with the mecha-
isms of amino acid addition to the genetic code. One of them assumes
hat newly added amino acids captured codons due to duplications of
enes coding for tRNAs and aminoacyl-tRNA synthetases (Cavalcanti
t al., 2000, 2004; Massey, 2015, 2016; Koonin, 2017; Koonin and
ovozhilov, 2017). The products of the duplicated genes most likely

ecognized initially groups of similar codons and there existed an
mbiguity in the coding of amino acids until the whole system became
ore precise (Fitch and Upper, 1987; Barbieri, 2015).

Results of our simulations indicate that the structure of coding sys-
ems optimal in terms of unambiguous translation strongly depends on
he number of coded labels. We found an interesting succession of code
ypes with gradual addition of labels into the codes. When a code had
o encode a few labels, four and five, the best reduction of translational
ncertainty was under the 𝑀3 rule. Next, the 𝑀2 model was preferred
y the codes encoding six to 14 labels, whereas for 15 and more labels,
he least tolerant assumption 𝑀1 was the best solution. Therefore, a
maller degeneracy of codes evolved from a greater ambiguity with the
ddition of coded items into the genetic code. The results suggest that
hese three different systems of translational inaccuracy can be optimal
t different stages of the genetic code evolution. The replacement of
hese systems well corresponds to the 2-1-3 model (Massey, 2006,
008) and the four-column theory (Higgs, 2009), which also postulate
subsequent reduction of degeneracy. In the initial genetic code, the

econd codon position determined the coded amino acids, whereas
7

W

ther positions were less crucial. Next, the first codon position became
ore specific and finally the third position differentiated some amino

cids. Our finding show that the system of reading genetic information
ust have changed when new genetic information was added into the

epertoire of coded amino acids.
The structure of the present standard genetic code is very similar

o the codes optimized under the 𝑀1 assumption for 21 labels. The
ost frequently used groups consists of two and four codons. In the

GC, there are also three six-codon groups, which disappeared in the
ptimized codes but are quite frequent in the codes encoding 10 or 11
mino acids. It can suggest that these groups are relics from previous
tages of the genetic code evolution.

Our analyzes showed that fixation of two codon positions could be
nough to reduce ambiguity in the assignment of codons to amino acids
nd produce the structure similar to that in the SGC. However, the
urrent translational machinery is still characterized by mistranslation
ith the rate of 10−3 to 10−6 per codon (Ribas de Pouplana et al., 2014)
r 10−3 to 10−5 per incorporated amino acid (Kramer and Farabaugh,
007; Schwartz and Pan, 2017; Allan Drummond and Wilke, 2009;
ordret et al., 2019), which is much higher than DNA replication

rrors, i.e. 10−9 to 10−10 per residue (Lee et al., 2012; Zhu et al.,
014). Thereby, 15% of average-length protein molecules can contain
t least one misincorporated amino acid (Allan Drummond and Wilke,
009). Apparently, the minimization of mutation errors associated
ith replication was more important and was optimized around the
stablished genetic code (Dudkiewicz et al., 2005; Mackiewicz et al.,
008; Błażej et al., 2015, 2017). The relatively high mistranslation rate
ould be in some cases profitable, e.g. in adaptation to oxidative and
nvironmental stresses as well as in host invasion and evasion of immu-
ity by parasites (Santos et al., 1999; Gomes et al., 2007; Netzer et al.,
009; Wiltrout et al., 2012; Miranda et al., 2013) although proteins that
re synthesized with errors can incorrectly fold and lose their functions,
hich generally decreases fitness of organisms (Allan Drummond and

ilke, 2009).
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