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a  b  s  t  r  a  c  t

One  of theories  explaining  the present  structure  of  canonical  genetic  code  assumes  that  it was  optimized
to  minimize  harmful  effects  of  amino  acid replacements  resulting  from  nucleotide  substitutions  and
translational  errors.  A  way  to testify  this  concept  is  to find  the  optimal  code under  given  criteria  and
compare  it  with  the  canonical  genetic  code.  Unfortunately,  the  huge  number  of possible  alternatives
makes  it  impossible  to find  the optimal  code  using  exhaustive  methods  in sensible  time.  Therefore,
heuristic methods  should  be applied  to search  the  space  of  possible  solutions.  Evolutionary  algorithms
(EA)  seem  to be ones  of  such  promising  approaches.  This  class  of  methods  is founded  both  on  mutation
and  crossover  operators,  which  are  responsible  for creating  and  maintaining  the  diversity  of  candidate
solutions.  These  operators  possess  dissimilar  characteristics  and  consequently  play  different  roles  in
the process  of finding  the  best  solutions  under  given  criteria.  Therefore,  the effective  searching  for  the
potential  solutions  can  be  improved  by applying  both  of  them,  especially  when  these  operators  are
devised  specifically  for  a  given  problem.  To  study  this  subject,  we analyze  the  effectiveness  of algorithms
for  various  combinations  of mutation  and  crossover  probabilities  under  three  models  of  the  genetic  code
assuming  different  restrictions  on its structure.  To  achieve  that,  we  adapt  the  position  based  crossover
operator  for  the  most  restricted  model  and  develop  a  new type of  crossover  operator  for  the  more  general
models.  The  applied  fitness  function  describes  costs  of amino  acid  replacement  regarding  their  polarity.
Our  results  indicate  that  the usage  of  crossover  operators  can  significantly  improve  the  quality  of  the

solutions.  Moreover,  the simulations  with  the crossover  operator  optimize  the  fitness  function  in  the
smaller  number  of generations  than  simulations  without  this  operator.  The  optimal  genetic  codes  without
restrictions  on  their  structure  minimize  the costs  about  2.7  times  better  than  the  canonical  genetic  code.
Interestingly,  the  optimal  codes  are dominated  by  amino  acids  characterized  by  polarity  close  to  its
average  value  for all  amino  acids.

©  2016  Elsevier  Ireland  Ltd.  All  rights  reserved.
. Introduction

It is worth mentioning that if we take into account the structure
f the canonical genetic code with 61 possible codons encoding 20
mino acids and three stop translation codons, then we obtain a
uge number of potential alternatives, about 1.51 × 1084. It makes
he question about the ‘frozen’ canonical genetic code among such
normous number of other possibilities very intriguing (Crick,
968). There are three main theories trying to explain the origin

nd structure of the genetic code (see DiGiulio, 2005 for detailed
eview). However, none of them is unambiguously supported.

∗ Corresponding author.
E-mail address: pamac@smorfland.uni.wroc.pl (P. Mackiewicz).

ttp://dx.doi.org/10.1016/j.biosystems.2016.08.008
303-2647/© 2016 Elsevier Ireland Ltd. All rights reserved.
The first theory, called stereo-chemical, claims that some struc-
tural relationships and interactions between coded amino acids and
stretches of RNA (e.g., codons, anticodons and reversed codons)
(Dunnill, 1966; Pelc and Welton, 1966) were responsible for the
present structure of the genetic code. So far, well confirmed such
relationships were found for seven amino acids (see for review:
Yarus et al., 2005). According to the physico-chemical (adaptive)
theory (Freeland and Hurst, 1998; Gilis et al., 2001; Freeland et al.,
2003), the canonical genetic code is optimized to minimize dele-
terious effects of mutations and errors occurring during protein
synthesis (translation). The level of its adaptation can be mea-
sured by harmful effects of the replacement of one amino acid to
another (Haig and Hurst, 1991). The coevolution hypothesis states

that codons in the ancestral genetic code encoded only a small sub-
set of amino acids and later, along with the evolution of biochemical
organization of primary cells, newly synthesized amino acids took

dx.doi.org/10.1016/j.biosystems.2016.08.008
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystems.2016.08.008&domain=pdf
mailto:pamac@smorfland.uni.wroc.pl
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ver the codons from the amino acids to which they were related in
he biosynthetic pathways (Wong, 1975, 2005; Taylor and Coates,
989; Di Giulio, 1991, 1989, 2016). Since the newly emerged amino
cids as well as the taken codons were similar to their precur-
ors this concept also explains why the genetic code can reflect
n optimization in respect to translational errors.

The problem of genetic code optimization was investigated by
any authors using two approaches: the statistical one (Freeland

t al., 2000; Mackiewicz et al., 2008), which compares the canonical
enetic code with many randomly generated alternatives, and the
ngineering method (Di Giulio, 2000), which compares the canoni-
al code with the computationally optimized alternative. However,
he large number of possible genetic codes makes it difficult to
earch the space of potential genetic codes. Therefore, the idea of
pplying adapted evolutionary-based algorithms (EA) seems very
seful in solving this problem and is promising in a further research
n general properties of the genetic code (Santos and Monteagudo,
010, 2011). This proposal allowed for better location of the canon-

cal genetic code in the fitness landscape and calculation of its
istance to the optimized code.

The EA approaches are based on mutation and crossover opera-
ors. The mutation operator is indispensable in every evolutionary
ased algorithm because it is responsible mainly for introducing
ew information into the population of candidate solutions. The
ffectiveness of this algorithm can be improved by applying a
rossover operator. This operator is used to create new individuals
offspring) based on existing solutions (parents). As a result, newly
reated individuals can often inherit good parts of their parents
nd therefore can be better and quicker adapted. It results from
he fact that parent individuals are not random because they are
xamined by a selection process in the preceding simulation step.
onsequently, the crossover mutation operators are jointly respon-
ible for random changes in the population of candidate solutions
nd drive the computational evolution.

The different properties of these operators makes that each of
hem introduces its own variation. Therefore, it seems that the
nclusion both of them should generally enhance the effectiveness
f searching for possible solutions. However, potential benefits of
sing crossover operator depend on the kind of optimization prob-

em (Fogel and Atmar, 1990; Spears, 1992, 1994; Park and Carter,
995; Kokosiński, 2005). Thus, it is reasonable to test the influence
f crossover operator on the effectiveness of evolutionary algo-
ithm in every considered model and develop operators that are
pecific for a given problem.

Therefore, in this work, we adapted the position based crossover
perator for two models of the genetic code and proposed a new
perator for another model. We  studied the performance of the
lgorithms for different combinations of mutation and crossover
robabilities. Based on this large item of data, we were able to test
ith statistical significance the potential impact of these parame-

ers’ values on the quality of the optimization process. Thanks to
his extensive search we were also able to evaluate the most opti-

al  genetic codes found in these simulations and compare them
ith the canonical one.

. Methods

.1. Mutation and crossover operators

In the previous attempts to solve the problem of the genetic
ode optimality, different types of mutation operators were used

see Santos and Monteagudo, 2010, 2011 for details). Their usage
epended on restrictions on the genetic code structure. However,
he authors did not use any type of crossover operator. Further-

ore, they emphasized that the classical crossover operators do
s 150 (2016) 61–72

not guarantee that all amino acids are always represented in the
derived genetic codes (offspring) (Santos and Monteagudo, 2010).
To deal with this problem, we adapted an already known crossover
operator and also proposed a new one. We  tested their quality
under three restrictions (models) in searching the space of genetic
codes:

1. Canonical structure 1 (CS1), which preserves the characteris-
tic structure of codon blocks and degeneracy of the canonical
genetic code. To generate potential codes, we permuted the
assignment of amino acids between the codon blocks.

2. Canonical structure 2 (CS2), which preserves the number of
codons per amino acid as in the canonical code. To generate
potential codes, we permuted the assignment of codons to amino
acids disregarding the codon blocks structure. By comparing
results obtained for CS2 and CS1, we can test the importance
of the characteristic codon blocks’ structure with maintained
degeneracy of the canonical genetic code.

3. Unrestricted structure (US), which has no constraints on the
genetic code structure but assumes that every amino acid should
be coded by at least one codon. To generate potential codes, we
randomly divided 61 codons into 20 non-overlapping sets.

For all the described models, we  claimed that stop codons
remained invariant during all simulations and stayed the same as
in the canonical code.

In the case of CS1, we adapted the position based crossover
(POS) operator (Syswerda, 1991). A similar procedure is used in
an evolutionary-based approach to the travelling salesman prob-
lem (Larrañaga et al., 1999). The POS draws amino acids from the
parental codes at random and assigns them to the corresponding
codon blocks in the offspring (Fig. 1A). The remaining codon blocks
have amino acids assigned in the order of the other parent. When
an amino acid is already present in the offspring, the other one
is selected according to its position in the vector of amino acids
(Fig. 1B). It ensures that every amino acid in the offspring is assigned
only to one codon block.

However, this operator cannot be directly used in the CS2 and US
models because the possible offspring might not inherit the proper
structure of its parents. In this case, the generated genetic codes
might not code all 20 amino acids. Therefore, we had to intro-
duce another version of crossover operator (Fig. 2), according to
the following procedure:

1. We  create offspring O1 and O2, which are identical to their par-
ents P1 and P2.

2. We  select randomly an amino acid ai, the same for the two par-
ents, coded by parental codon blocks C1 and C2, respectively.

3. We  compare the blocks and recognize the set of codons present
in both parents, i.e., U = C1 ∩ C2 as well as sets of codons present in
one parent and absent in the other, i.e., S1 = C1 \ U and S2 = C2 \ U
such that the condition S1 ∩ S2 =∅ is fulfilled.

4. The codons that are the same in the two  parental codon blocks,
i.e., ci ∈ U, are not exchanged (Fig. 2A).

5. In the case of the sets S1 and S2, we  choose at random codons
ci ∈ S1 and cj ∈ S2 and exchange them between offspring O1 and
O2 (Fig. 2B). To keep the original set of all codons represented
by only one item, the codon exchange is realized by the swap of
corresponding codons within a given offspring. Thanks to that,
the individual that donated a codon does not loose it, whereas
the offspring obtaining the codon has it assigned only once. The
exchanged codons ci and cj are then removed from S1 and S2.

This procedure is repeated until there are no codons left in S1 or
S2 for selection.

6. When, for example, S1 =∅ and S2 /= ∅, there are no codons for
mutual exchange. Then a codon, here cj ∈ S2, is moved to the



P. Błażej et al. / BioSystems 150 (2016) 61–72 63

Parent1

Parent1

Offspring1

Offspring1

Parent2

Parent2

Offspring2

Offspring2

a
1

a
1

a
1

a
1

a
1

a
1

a
4

a
4

a
4

a
4

a
4

a
4

a
4

a
2

a
2

a
2

a
2

a
2

a
2

a
2

a
5

a
5

a
5

a
5

a
5

a
5

a
5

a
5

a
3

a
3

a
3

a
3

a
3

a
3

a
3

a
3

a
6

a
6

a
6

a
6

a
6

a
6

a
6

a
6

c
3

c
3

c
3

c
3

c
3

c
3

c
3

c
3

c
7

c
7

c
7

c
7

c
7

c
7

c
7

c
7

c
11

c
11

c
11

c
11

c
11

c
11
 c

11

c
11

c
4

c
4

c
4

c
4

c
4

c
4

c
4

c
4

c
8

c
8

c
8

c
8

c
8

c
8

c
8

c
8

c
12

c
12

c
12

c
12

c
12

c
12

c
12

c
12

c
2

c
2

c
2

c
2

c
2

c
2

c
2

c
2

c
6

c
6

c
6

c
6

c
6

c
6

c
6

c
6

c
10

c
10

c
10

c
10

c
10

c
10
 c

10

c
10

c
14

c
14

c
14

c
14

c
14

c
14
 c

14

c
14

c
16

c
16

c
16

c
16

c
16

c
16
 c

16

c
16

c
18

c
18

c
18

c
18

c
18

c
18
 c

18

c
18

c
1

c
1

c
1

c
1

c
1

c
1

c
1

c
1

c
5

c
5

c
5

c
5

c
5

c
5

c
5

c
5

c
9

c
9

c
9

c
9

c
9

c
9

c
9

c
9

c
13

c
13

c
13

c
13

c
13

c
13
 c

13

c
13

c
15

c
15

c
15

c
15

c
15

c
15
 c

15

c
15

c
17

c
17

c
17

c
17

c
17

c
17
 c

17

c
17

B

A

F s (ai)
i g ami

d
i
a
u
b
t
c
a
a
T
t
m
s

2

g
a

ig. 1. The schema of the crossover operator for the CS1 model. A. Some amino acid
n  the corresponding offspring. B. The still empty codon blocks inherit the remainin

offspring O1 and deleted from the offspring O2 (Fig. 2C). To
maintain the original set of all codons without repetitions, the
obtained codon, here by the offspring O1, is taken from an amino
acid of this individual in which it is coded by this codon, whereas
in the offspring O2, the codon is shifted to the same amino acid
in its own set. Thereby, it is possible to change the number of
codons for amino acids. This exchange is not realized when an
amino acid from which a codon should be taken is coded by only
one codon (Fig. 2D).

In our simulations, we applied various mutation operators in
ependence on the used model. In the case of CS1, the mutation

s realized by a random selection of two different amino acids
nd an interchange of their codon groups. In the CS2 model, we
sed a swap operator that interchanges randomly selected codons
etween their original amino acids. In the case of the US model,
he mutation process is realized by two operators. The first one
hooses one codon at random and assigns it, if it is possible, to
nother randomly selected amino acid. The second mutation oper-
tor is the same as the mutation operator used in the CS2 model.
hey are both used at random with the joint probability of muta-
ion equal to a fixed value. We  applied two operators in the US

odel because the usage of only the first one did not guarantee a
atisfactory convergence to the final solution.

.2. Fitness function
As it was mentioned, we considered three restrictions on the
enetic code structure and searched for the optimized possible
lternative that minimizes a fitness function. Similarly to other
 are randomly chosen from parents and assigned to blocks consisting of codons (ci)
no acids from the second parent according to their order in its code.

authors (Haig and Hurst, 1991; Santos and Monteagudo, 2010,
2011), we used the following fitness function:

F =
∑

〈i,j〉 ∈ D

[p(i) − p(j)]2,

where D is a set of pairs of codons 〈i, j〉 which differ in one codon
position, whereas p(i) and p(j) are the polarity values of amino acids
coded by the codons i and j, respectively. We  chose this amino acid
property (Woese, 1973) because it was shown that the standard
genetic code has achieved 68%-minimization of this property (Di
Giulio, 1989). In other words, F is the total of squared differences
between the polarity values of amino acids coded by their origi-
nal codons and the ones coded by mutated codons different in one
codon position from the original one. Thereby, the fitness func-
tion considers costs of all possible single-point mutations between
codons. Mutations involving stop codons were ignored. The aim of
the optimization procedure was to minimize this function in order
to find such assignment of codons to amino acids that minimizes
the costs of amino acid replacements.

2.3. Simulation procedure

For each model of the genetic code, we tested nine probabili-
ties of mutations (0.1, 0.2, . . .,  0.9) together with 10 probabilities of
crossover (0, 0.1, 0.2, . . .,  0.9). Each type of simulation was  run up to
1000 generation steps and repeated 100 times with different seeds

and 280 initial codes randomly generated. Thus, it gave in total 9000
simulation runs for one model. An example of variation in the fit-
ness function calculated from 100 independent simulations under
the same parameters and different seeds is presented in Fig. 3. The
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Fig. 2. The schema of crossover operator for the US model. A. Codons (marked in
yellow) shared by two  parents P1 and P2 are not exchanged, whereas those present
in  one parent but absent in another (marked in blue) will be subjected to swap. B. A
mutual exchange of codons (orange arrow) between offspring O1 and O2 is realized
by  a swap of corresponding codons in the individuals (black arrows). C. A shift of
codon from one individual to another (orange arrow) in the case when all codons
were already exchanged is accomplished by a movement of corresponding codons
in  the individuals (black arrows). D. The example in which the shift of a codon cannot
be  carried out because the codon to be shifted in the offspring 1 is the only codon
for  its amino acid. (For interpretation of the references to color in this legend, the
r
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Fig. 3. An example of the variation in the fitness function F under the US model with
the  number of generations, calculated from 100 independent simulation runs with
different initial seeds. The mutation and crossover probabilities are equal to 0.5. The
thick line indicates median, the box shows quartile range and the whiskers denote
the range without outliers.

Fig. 4. Changes in the best approximation of the fitness function F with the number
of  generations, based on the GAM model and computed from 100 simulations with
different initial seeds under the US model. The mutation and crossover probabilities
are equal to 0.5. The approximation is characterized by a very narrow 0.95 confi-

Fnocr − FCr
eader is referred to the web version of the article.)

 shows the decreasing variation during simulation and converges
o very similar values in the independent simulations.

The huge amount of data allowed us to perform statistical
nalysis of the stochastic processes and evaluate effectiveness of
ested operators and parameters in finding optimal solutions. To
etected a general tendency of the observed processes with the
.95 confidence interval, we used general additive model (GAM)
pproximation method (Wood, 2006) (Fig. 4).

.4. Performance measures

Besides the fitness function, we considered also the measure S
o characterize the efficiency of carried out simulations and algo-
ithms. This measure describes the mean time t (measured by the
umber of generations) to reach the “nearly” steady state of the
imulation runs, i.e., when the minimum value of the fitness func-
ion Fmin(t) varies no more than 1% of the Fmin(T), where T is the
nal simulation step = 1000 generations.

We also calculated improvements of the fitness function result-
ng from the application of the crossover operator in simulations
ith fixed values of mutation probability. This parameter was
xpressed as a percentage difference between the values of the fit-
ess function FCr obtained in a simulation with crossover and the
dence interval depicted by the gray border, which may not be clearly visible in this
scale.

values of the fitness function Fnocr calculated for a simulation when
only the mutation operator was  applied:
impF = 100% ·
Fnocr

.
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Similarly, we introduced an improvement of the time to reach
he “nearly” steady state given by the following equation:

mpS = 100% · Snocr − SCr

Snocr
,

here SCr is the mean time to reach the “nearly” steady state calcu-
ated from all simulation runs with a given crossover value, whereas
nocr is the mean time for simulations without crossover.

To check the potential statistical significance of differences in
he values of the proposed measures between simulations with
ifferent combination of mutation and crossover probabilities, we
erformed the non-parametric Kruskal–Wallis test (KW) using R
ackage (R Core Team, 2015). Depending on the outcome of the
est, we did also the Dunn post hoc test, which is a pairwise multi-
le comparison procedure appropriate to follow the rejection of the
W test results. The resulted p-values were adjusted by the Holm’s
ethod. Other statistical analyses were carried out in Statistica

oftware (StatSoft, 2014).

. Results and discussion

.1. Influence of crossover operator on fitness function

At first, we tested if simulations with different probabilities of
rossover and the fixed probability of mutation converge to simi-
ar values of the fitness function F after 1000 generation steps. An
xample for the CS1 model is shown in Fig. 5. It is clearly visible
hat the final value of F depends on the applied crossover probabil-
ty and it is best minimized in simulations with the largest applied
rossover probability (0.9), whereas the exclusion of this operator
rom the algorithm results in the worst optimization.

To visualize the influence of crossover on the function F, we
alculated the mean values of this function for all combinations of

utation and crossover probabilities, and plotted them as a heat-
ap  (Fig. 6). It is clear that the larger probabilities of both mutation

nd crossover operators cause better optimization of the fitness
unction.
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ig. 5. Changes in the fitness function F of genetic codes under the CS1 model with
he  number of generations for different crossover probabilities. The mutation prob-
bility equals 0.2. It is clearly visible that the fitness function is best minimized in
he  simulation with the largest crossover probability = 0.9. Grey borders show the
.95 confidence interval.
Fig. 6. Values of the fitness function F for all combinations of considered mutation
and crossover probabilities. The values of F were averaged over 100 runs at the end
of  simulations for the CS1 model.

Sections through the heat-map are presented in Fig. 7. They con-
firm the significant decrease of the fitness function with the growth
of the mutation probability. The positive influence of the crossover
operator on the minimization is also visible. Calculated correlation
coefficients for these relationships were significant and negative,
similarly to the slopes of fitted linear functions (Table 1). The only
exception is the simulation with the largest mutation probabil-
ity = 0.9, for which the relationship is not significant. It results most
probably from the domination of the mutation operator over the
advantageous contribution of crossover in finding the optimal solu-
tion. In this case, the generation of new potential solutions by the
mutation operator is so intensive that it decreases the impact of
crossover.

We tested the significance of the differences between 10 groups
of simulation results with various values of crossover probabil-
ity and the fixed mutation probabilities using the Kruskal–Wallis
test. The test rejected the null hypothesis (with p-value <0.001)
about the similarity of the distribution of the fitness function val-
ues in these groups. Furthermore, the Dunn post hoc test applied
to this data revealed statistically significant differences (p-value
<0.05) in 354 pairwise comparisons (out of 405) of these groups.
In particular, for the fixed mutation probabilities, the values of the
function F were significantly smaller in 72 out of 81 simulations
with applied crossover operator than without it. In only four com-

parisons, the simulations without crossover produced significantly
smaller values of the fitness function. These results indicate a con-
siderable influence of the crossover operator on the optimization
of the function F.

Table 1
Slope and correlation coefficient (r) of approximated linear functions between the
fitness function and the crossover probability for the respective mutation probabil-
ities (mut) under the CS1 model. Significance levels of p-value for r are indicated by:
*  for p < 0.05, ** for p < 0.01 and *** for p < 0.001.

Mut  Slope r

0.1 −100.6 −0.92***
0.2  −99.0 −0.97***
0.3  −110.2 −0.97***
0.4  −83.0 −0.91***
0.5  −86.9 −0.92***
0.6  −55.9 −0.82**
0.7  −50.4 −0.89***
0.8  −32.0 −0.72*
0.9  −2.0 −0.14
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Fig. 7. Relationship of the average values of the fitness function with the probability of c
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Table 2
The largest improvement of the fitness function (impF) averaged over 100 simulation
runs  obtained for the fixed mutation probability (mut) and given crossover (Cr)
under the CS1 model.

Mut  Cr impF [%]

0.1 0.9 4.7
0.2  0.9 4.9
0.3 0.9 5.6
0.4  0.9 4.0
0.5  0.7 4.3
0.6  0.8 2.7
0.7  0.9 2.8
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This influence is also supported by the maximal percentage
mprovement of the fitness function (impF) resulting from the
pplied crossover operator, calculated for each fixed mutation
robability (Table 2). The greater probability of crossover (Cr >0.7) is
equired to minimize the function better. However, its contribution
s masked when the greater mutation probability is applied. There
s a significant negative correlation between the mutation prob-
bility and the largest improvement of fitness function (Pearson
orrelation coefficient, r =−0.93, p-value = 0.0003).

In contrast to the CS1 model, there were no statistically signifi-
ant differences (p-value >0.05) in the CS2 and US models between
istributions of the F function for simulations with different val-
es of crossover probabilities. It suggests that the algorithm with
nd without crossover stabilizes around similar values at the end of
imulations. However, it should be emphasized that the crossover
as not responsible for any kind of deterioration of the final results

n these cases and the fitness function was always substantially
inimized (Fig. 8).

.2. Influence of crossover operator on convergence to stable
olutions
Although we did not find any significant relationship between
he crossover probability and the fitness function values for the
S2 and US models, the application of crossover influenced another
rossover (A) and mutation (B) for different values of mutation (Mut) and crossover
th of crossover and mutation probabilities is visible.

important performance measure, which describes convergence to
stable solutions, i.e., the mean time to reach the “nearly” steady
state S, measured by the number of simulation steps. The shortest
mean time S for the CS2 model equalled 155 steps for simulations
with the probability of crossover = 0.7 and mutation = 0.7. For sim-
ulations without crossover and the same mutation probability, this
time was longer: 256 steps. For the US model, the shortest mean
time, i.e., 314 steps, was  for simulations with the probabilities of
crossover = 0.8 and mutation = 0.3. For the corresponding simula-
tions without crossover it was 438 steps. The longest mean times
were found for simulations without crossover: 438 steps for the
CS2 model (mutation probability = 0.1) and 751 for the US model
(mutation probability = 0.9).

Moreover, we found other interesting relationships between S
and the probabilities of mutation and crossover. The dependencies
are different for the CS2 and US model (Fig. 9). In CS2, the values of S
decline substantially with the simultaneous growth of the mutation
and crossover probabilities (Fig 9A). In the US model, the values of S
also fall monotonically with the increase in the crossover probabil-
ity but considering the mutation operator, S reaches smaller values
only for the mutation probability in the range 0.2–0.5 (Fig 9B). It is
clearly visible in Fig. 10A, where the time to reach the steady state
decreases linearly with the growth of the crossover probability
for all values of the mutation probabilities. The larger probabil-
ity of crossover, the shorter time to find the optimal solution. On
the other hand, Fig. 10B demonstrates a non-linear relationship
between the time S and the mutation probability for different val-
ues of the crossover probability. The quickest convergence to the
steady state is reached for the mutation probabilities about 0.3,
whereas the longest times are observed for the maximal muta-
tion probability = 0.9. These results suggest that a customized set
of parameters should be applied to speed up the convergence of
the algorithm, especially in the case of the US model. Moreover,
the increase in the mutation probability is not always beneficial.
When the mutation probability is too large, the time to find the

optimum gets longer because of too often destruction of promising
solutions. Theoretically, the same could also concern the crossover
but we  observed that the increase in the crossover probability to
0.9 has an advantageous effect in this particular case studied by us.
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Table 3
Slope and correlation coefficient (r) of approximated linear functions between the
time to reach the steady state and the crossover probability for the respective muta-
tion probabilities (mut) under the CS2 and US models. Significance levels of p-value
for r are indicated by: * for p < 0.05, ** for p < 0.01 and *** for p < 0.001.

Mut  CS1 model US  model

Slope r Slope r

0.1 −72.9 −0.67* −142.5 −0.85**
0.2  −62.3 −0.73* −124.3 −0.89***
0.3  −62.2 −0.67* −120.0 −0.9***
0.4  −78.3 −0.97*** −128.4 −0.9***
0.5  −71.0 −0.83** −148.6 −0.95***
ig. 9. Values of the mean time to reach the “nearly” steady state S for all combina
S  (B) models. The values of S were averaged over 100 runs at the end of simulation

The significant linear fall of the time S with the increase in the
rossover probability was also found under the model CS2 in simu-
ations with all mutation probability values (Table 3). The slopes of
pproximated linear functions are also negative and the correlation
oefficients are high and significant. However, these relationships
re less pronounced than those in the US model, in which the slopes
re almost two times larger. In the case of the CS1 model, we did
ot observe such significant relationships although negative slopes
ere found in seven cases of different mutation probabilities.

The results show that the impact of crossover on shortening the
ime of finding the optimal solution increases with the complexity
f considered task, from the CS1 and CS2 to US model. Corre-
pondingly, for these models, there are 5.225 × 108, 5.559 × 1064
nd 8.788 × 1078 candidate solutions. Finding the optimal solution
s the most difficult and time-consuming in the US model, under

hich the advantageous influence of crossover is the most pro-
ounced.
0.6  −47.9 −0.72* −139.0 −0.86**
0.7  −80.0 −0.83** −113.3 −0.86**
0.8  −65.9 −0.78** −112.5 −0.87**
0.9  −51.6 −0.86** −101.1 −0.95***
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Fig. 10. Relationship of the averaged time to reach the steady state (measured in the number of simulation steps) with the probabilities of crossover (A) and mutation (B) for
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Table 4
The largest improvement of the time to reach the “nearly” steady state (impS) aver-
aged over 100 simulation runs obtained for the fixed mutation probability (mut)
and given crossover (Cr) under the CS2 model.

Mut  Cr impS [%]

0.1 0.8 25.0
0.2  0.5 22.6
0.3  0.4 29.2
0.4  0.9 30.2
0.5  0.9 35.3
0.6 0.9 27.9
0.7  0.7 39.4
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Fig. 11. Box-plots of the time to reach the “nearly” steady state S from simulations
under the US model with the fixed value of mutation probability (0.5) and different
probabilities of crossover. The thick horizontal line indicates median, the box shows
the  range between the first and third quartiles (IQR, the inter-quartile range) and
0.8  0.8 35.4
0.9  0.7 23.1

To confirm statistically the properties of the S function, we  com-
ared the values of S between simulations with various crossover
nd fixed mutation probabilities using the Kruskal–Wallis test. In
he CS2 and US models, the null hypothesis about similar distribu-
ions of the S function values between groups was rejected (p-value
0.001), which corresponds well with our previous results. Fur-
hermore, the Dunn post hoc test applied to this data revealed
ubstantial differences in pairwise comparisons of simulations with
arious crossover parameters (p-value <0.05). In particular, these
esults support our findings that there are statistically signifi-
ant differences between simulations with no crossover and with
rossover greater than 0.5 for all mutation probabilities. The simu-
ations with greater probabilities of crossover showed shorter times
o reach the steady state than the simulations with only mutation
perator. This tendency is clearly visible in the box-plots of the S
easure (Fig. 11).
These results are in agreement with the calculated improve-

ent of the time to reach the “nearly” steady state imps (Table 4,
). The values for CS2 model are in the range 22–39%, which indi-
ates that the application of the crossover operator substantially

hortens the time of convergence to the “nearly” stable solution
Table 4). The largest improvements concern simulations with
rossover probabilities greater than 0.5 and do not seem to depend
the  whiskers determine the range without outliers for the assumption 1.5 × IQR.

on the mutational probability (r =−0.379, p = 0.315). However, in
the case of the US model, there is a clear dependence between
mutation probability and impS (r =−0.876, p = 0.002) (Table 5). For
mutation probabilities less than 0.7, the improvement is about 30%,

whereas for the greater probabilities, the impS declines to the range
13.8% to 18.1%. A considerable improvement is also observed for
simulations with large crossover probabilities (≥0.7).
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Fig. 12. Distribution of the fitness function values for initial (random) and the best optimized sets of genetic codes for three restrictions (models) of the genetic code: CS1
(A),  CS2 (B) and US (C). The value of the canonical genetic code was  also marked.

Table 5
The largest improvement of the time to reach the “nearly” steady state (impS) aver-
aged over 100 simulation runs obtained for the fixed mutation probability (mut)
and given crossover (Cr) under the US model.

Mut  Cr impS [%]

0.1 0.8 32.2
0.2  0.9 29.2
0.3  0.8 28.2
0.4  0.9 30.3
0.5  0.9 28.8
0.6  0.9 28.7
0.7  0.7 17.1

o
i
o
t
c
“

0.8  0.9 18.1
0.9  0.9 13.8

Some influence of the crossover parameter on impS was  also
bserved for the CS1 model. Considering the case with the smallest
mprovement of the fitness function, i.e., 0.4%, for the probability

f mutation 0.9 and crossover 0.5 (Table 2) and comparing it to
he simulation with the same mutation probability but without
rossover, we  found 33% improvement of the time to reach the
nearly” steady state.
Our results indicate that the application of crossover opera-
tors in evolutionary algorithms approach improves significantly the
quality of solutions in the problem of finding the optimal genetic
code. Their usefulness may, however, depend on the optimization
problem (Kokosiński, 2005). For example, several authors (Fogel
and Atmar, 1990; Spears, 1992, 1994) observed that the crossover
is responsible for a premature convergence and a loss of popula-
tion diversity in studied optimization problems, whereas Park and
Carter (Park and Carter, 1995) pointed out that the influence of the
crossover operator is negligible in many combinatorial problems.
Searching the huge space of genetic codes is a sufficiently complex
problem that the benefit of the crossover operator is apparent.

3.3. The found optimal genetic codes

The application of mutation and crossover operators with divers
probabilities enabled us to effectively search the space of poten-
tial genetic codes for one that minimizes the costs of amino acid

replacements. The distribution of the fitness function for the best
optimized codes in comparison to the initial (random) codes and
the canonical one are presented in Fig. 12 for three restrictions
(models) imposed on the genetic code. The optimized codes are
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Fig. 13. The optimal genetic codes found under the least restrictive US model. The
selected amino acids and their codons that differ in seven equivalent variants with
the  same smallest value of the fitness function were marked by bold rectangles. The
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different structure from the canonical one, it does not exclude
reas of amino acids were colored according to their values in the polarity scale by
oese (1973) (shown on the left).

learly shifted to the lower values of the fitness function. The dis-
ance between the distributions of the optimized and the initial
odes is smallest for the most restricted model CS1 (409), larger
1331) for the model CS2 with bigger number of alternative codes
nd greatest (1813) for the most general model US. The value

f the fitness function for the canonical genetic code is located
etween these distributions but more closer to the optimized
odes.
s 150 (2016) 61–72

The codes that decreased the cost of amino acid replacements to
the greatest extent were found under the most general US model,
which assumes the least restrictions on the genetic code structure.
Under this model, we  found seven codes with the same smallest
value of the fitness function = 967. In the case of the CS1 and CS2
models the values were larger, i.e., 1758 and 1904, respectively.

The average value for randomly generated codes under the US
model at the beginning of the simulations was  6069 ± 917 standard
deviation, which indicates more than six-fold reduction of the fit-
ness function value in the optimal codes. For comparison, the value
of F for the canonical genetic code is 2623, which means that the
real code minimizes the costs of amino acid replacements 2.7 times
worse than the optimized solutions.

Another way  to determine the optimization level of the
genetic code is the percentage of distance minimization (pdm).
This measure was defined by Di Giulio (Di Giulio, 1989) as:
pdm = 100 × (fmean − fcode)/(fmean − foptimal), where fmean is the esti-
mated average value of the fitness function for random codes, fcode
is the value for the canonical genetic code and foptimal is the value
for the found optimal solution. The pdm is interpreted as the opti-
mization of the canonical genetic code in relation to the randomized
mean code and the best optimized code. The larger values indicate a
similar distance of the canonical code and the optimal one from the
random codes. Our simulations showed that the pdm for the opti-
mal  codes in the US model is 68%, whereas for CS1 and CS2, 71% and
75%, respectively. If the genetic code was optimal, its pdm would
be 100%, whereas if the value for the optimal code approaches zero
(indicating no costs of replacements), the pdm would approach 57%
in the US model and 45% in the CS1 and CS2 models.

Our results indicate that it is quite easy to improve signifi-
cantly the optimization properties of the canonical genetic code
when restrictions imposed on the code structure are substantially
relaxed (here we  only assumed the fixed position of stop trans-
lation codons). This conclusion is in agreement with studies that
also included less restrictive assumptions on the code structure
and states that the genetic code is far from being optimal and rep-
resents only a locally optimized solution (Novozhilov et al., 2007;
Santos and Monteagudo, 2010, 2011).

The found optimal codes are presented in Fig. 13. There are
only three pairs of positions in these codes that differ between
them. The following amino acid pairs occur interchangeably in
these positions: proline and threonine, valine and cysteine as well
as isoleucine and leucine. The differences have no influence on the
fitness function of these codes because the amino acids in pairs have
the same or very similar polarity values. Therefore, the codes are
equivalent in this respect. Interestingly, these codes are dominated
by alanine, which occupies 18 codons and serine, which is coded by
14 codons. The next frequent amino acids in the codes are glycine
with 9 codons and histidine with 4 codons. The others are encoded
by only one codon. In the canonical genetic code, these amino acids
are coded by 4 (Ala and Gly), 6 (Ser) or 2 (His) codons. The amino
acids expanded in the optimal codes are characterized by polarity
values close to the average value of all amino acids (Fig. 14). The
Spearman correlation coefficient between the number of codons
for a given amino acid in the optimal codes and the absolute differ-
ence between the polarity value of the amino acid and the average
polarity equals −0.657 and is statistically significant (p = 0.0017).
The domination of the amino acids with the average polarity value
in the optimal codes minimizes the costs of replacements between
their codons and others that code for amino acids with extreme
polarity values.

Although we found that the optimal codes show a substantially
that the canonical code evolved under some constraints on the
minimization of mutational and translational errors. However, its
structure was  imposed rather by the initial assignment of amino
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ig. 14. The number of codons for respective amino acids in the found optimal gene
cid  and the average value of all amino acids: |p(i) − p̄|. The amino acids were arran
umber of codons have polarity close to the average value.

cids to codons and subsequent extension of the code by other
mino acids, according to the coevolution theory (DiGiulio, 2005),
hich makes it only locally optimized (Novozhilov et al., 2007;

antos and Monteagudo, 2010, 2011).

. Conclusions

The idea of searching for the optimal genetic code using the
volutionary-based algorithm initiated by Santos and Monteagudo
2010, 2011) is very promising and opens new possibilities in study-
ng the properties of the genetic code. Due to the flexibility of the
lgorithm, it can be modified to achieve better performance by
ntroducing various genetic operators whose advantageous role is
ot always clear. Therefore, we tested the influence of the crossover
perator on effectiveness of the algorithm in the problem of opti-
ization of the genetic code. Our results indicate that application

f this operator improved significantly the optimization process,
specially in tasks with larger space of potential solutions. The
imulations with the crossover were characterized by the smaller
alues of the fitness function and reached the stable solution in
horter time than simulations with only mutation operator. As a
esult, it is possible to search the space of possible genetic codes
ore effectively to find the optimal one. The shortening time of

earching for the potential solution can be useful in further exten-
ive and time-consuming studies when different fitness functions
nd structures of genetic code will be considered. The found opti-
al  codes minimize the costs of amino acid replacements in terms

f polarity much better than the canonical genetic code and are
haracterized by the domination of amino acids with the average
olarity value.
cknowledgements
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Larrañaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S., 1999. Genetic
algorithms for the travelling salesman problem: a review of representations
and operators. Artif. Intell. Rev. 13 (April (2)), 129–170, http://dx.doi.org/10.
1023/A:1006529012972.

Mackiewicz, P., Biecek, P., Mackiewicz, D., Kiraga, J., Baczkowski, K., Sobczynski, M.,

Cebrat, S., 2008. Optimisation of asymmetric mutational pressure and
selection pressure around the universal genetic code. In: Bubak, M.,  Dongarra,
J.,  VanAlbada, G.D., Sloot, P.M.A. (Eds.), Computational Science – ICCS 2008, PT
3.  Vol. 5103 of Lecture Notes in Computer Science. Elsevier, Springer, pp.
100–109.

http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0010
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0015
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0020
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0020
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0020
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0020
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0020
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0020
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0020
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0020
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0020
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0020
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0020
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0020
dx.doi.org/10.1016/j.jtbi.2016.04.005
dx.doi.org/10.1016/j.jtbi.2016.04.005
dx.doi.org/10.1016/j.jtbi.2016.04.005
dx.doi.org/10.1016/j.jtbi.2016.04.005
dx.doi.org/10.1016/j.jtbi.2016.04.005
dx.doi.org/10.1016/j.jtbi.2016.04.005
dx.doi.org/10.1016/j.jtbi.2016.04.005
dx.doi.org/10.1016/j.jtbi.2016.04.005
dx.doi.org/10.1016/j.jtbi.2016.04.005
dx.doi.org/10.1016/j.jtbi.2016.04.005
dx.doi.org/10.1016/j.jtbi.2016.04.005
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0030
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0035
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0040
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0045
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0050
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0055
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0060
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0065
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0070
dx.doi.org/10.1023/A:1006529012972
dx.doi.org/10.1023/A:1006529012972
dx.doi.org/10.1023/A:1006529012972
dx.doi.org/10.1023/A:1006529012972
dx.doi.org/10.1023/A:1006529012972
dx.doi.org/10.1023/A:1006529012972
dx.doi.org/10.1023/A:1006529012972
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080
http://refhub.elsevier.com/S0303-2647(16)30184-8/sbref0080


7 ystem

N

P

P

R

S

S

S
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