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Abstract— We have elaborated a new method of recognizing
protein coding sequences in genomic sequences. The method
is exploiting a specific way of genetic code degeneration and
relations between mutational pressure and selection pressure
shaping the amino acid usage in the proteomes. It is based on
analyses of correlations in nucleotide occurrence separately
in the first, the second and the third putative codon positions
using only six matrices 4x4. Small sizes of matrices enable
using only a few coding sequences for training the algorithm.
The results of the new method were compared with Markov
chain methods used in GeneMark for different genomes in-
cluding DNA strand (leading/lagging) discrimination. There
are no arbitrary "cut off" discriminating between coding and
noncoding sequences, on the other hand there is a possibility
to rank putative coding sequences according to their coding
probability what is especially important in looking for small
coding ORFs.
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1. Introduction
There are two main and different approaches for looking

for protein coding sequences; the first one based on cor-
relations in nucleotide sequences [1] and the second one
based directly on correlations in potentially coded amino
acid sequences [2], [3]. See [4] and [5] for recent reviews
of different gene prediction methods. Unfortunately, both
methods need many learning sequences, it is the best if the
learning set is from the studied genome or even located at
the defined DNA strand leading or lagging. A big number
of learning sequences are necessary to fill up the very
large matrices used in comparisons between the studied
sequences with sequences considered as standard. On the
other hand, it is known phenomenon that the mutational
pressure responsible for nucleotide composition of DNA
fits to selection pressure responsible mainly for amino acid
composition of proteome while the criterion of fitness is
the minimization of harmful effects of mutations into the
protein coding sequences [6]. Thus, the genetic code plays
the central role in the relations between the selection and the
mutational pressure and particularly it is the way the code
is degenerated. Degeneration of the genetic code should be
understood not only as using the different codons for coding

the same amino acid (mainly the third codon positions
accepting so-called synonymous mutations) but also as some
kind of degeneration of the first and second positions i.e.
thymine in the second position coding for hydrophobic
amino acid independently of the first and third positions
or adenine in the second position coding for polar amino
acids. It is also known that even in the same genome
the amino acid composition of proteins depends on the
mutational pressure operating on the leading and lagging
strands which means that it is not only DNA which is
asymmetric in its nucleotide composition but also fractions
of proteomes coded by the two DNA strands are asymmetric
in their amino acid compositions [7]. Correlations in the
occurrence of amino acids of specific characters have been
already considered in recognizing the coding sequences but
the values describing the physical and chemical properties of
amino acids were accepted disregarding the coding property
of the genetic code. We have used directly this property of
genetic code for recognizing the protein coding sequences
looking for correlations in nucleotide composition separately
for the first, the second and the third codon positions [8].
This method allows using very small matrices (six matrices
4x4) and, as a result, small number of learning sequences.
The method discriminates very sharply between coding and
noncoding ORFs (Open Reading Frames), shows the phase
in which a given sequence could code or even indicate the
DNA strand (leading/lagging) where the coding sequence is
located.

2. Algorithm
The presented algorithm for finding protein coding se-

quences consists of two steps: the training step and the test
(or analysis) step.

2.1 The training step

In this step, model parameters are computed based on
nucleotide sequences of a learning set. For such set, ORFs
annotated in GenBank with ascribed function are used for
a given species, excluding ORFs that were described as
hypothetical.



2.1.1 Construction of matrices

Let us consider S = {si1, si2, . . . , sin} (where i = 1, 2, 3)
which is a sequence of nucleotides extracted from fixed
codon positions in a protein coding sequence. We construct
the initial probabilities P (shi·) of h nucleotides si· situated in
the same codon positions i (where h defines the model order)
and also the probability transition matrices (i.e. between
nucleotides in the same codon position). Matrices M1, M2,
M3 concern to direct (sense) strands of training sequences
whereas matrices M4, M5, M6 are based on complementary
strands of these sequences (antisense). Matrices M4,M5,M6

are useful for a model of "shadow" coding regions. The
idea of incorporation the "shadow" model was introduced
by Borodovski and McIninch [9] who used it to avoid too
many false positive predictions on the complementary strand.

2.1.2 Determination of positional pattern frequencies

The obtained matrices are used to determine vectors
of positional pattern frequencies in the learning set. The
positional pattern is a vector of indices of matrices that give
the highest value of probability for a given codon position.
In sum, there are 27 such potential patterns e.g. 111, 112,
123, 121, 122, ..., etc. The frequencies of these vectors are
obtained as follows:

1. Each sequence in every reading frame is analyzed by
moving windows with a fixed length (e.g. 96 nt) and
a fixed shift (e.g. 12 nt);

2. For each window a vector of digits (d1, d2, d3) and
(c1, c2, c3) (called the positional pattern) is determined
in the following way:

• for each of three codon positions probabiblities
PM1

,PM2
,PM3

are calculated by using trained
matrices M1,M2,M3, respectively;

• if PMj = max(PM1 , PM2 , PM3) (for fixed codon
position i), then di = j and for each window
a positional pattern (d1, d2, d3) is obtained from
such an analysis of all three codon positions;

• pattern (c1, c2, c3) for the complementary strand
is obtained in the same way by using matrices
M4,M5,M6.

3. The frequency for each positional pattern are calcu-
lated from all analyzed windows and all sequences
from the learning set for each reading frame (Fig. 1).
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Fig. 1. Barplots of positional pattern frequencies computed
for the training set from Borrelia burgdorferi genome for
six reading frames.

2.2 The test or analysis step
The aim of this step is to find the correct reading frame

for an analyzed DNA sequence. The first two steps are the
same as in determination of positional pattern frequencies
(subsection 1.1.2)

1. As 1 in 2.1.2
2. As 2 in 2.1.2
3. For a positional pattern (d1, d2, d3) or (c1, c2, c3)

found for every window and every reading frame, we
ascribe a respective frequency P1, P2, P3 or P4, P5, P6

which were determined previously for the learning set;
4. As an additional non-coding reference we assume

uniform distribution of positional pattern frequencies
and introduce P7 = 1/27;

5. For every window we obtain a coding signal vector
of probabilities for six reading frames plus the non-
coding reference:(

P1∑7
i=1 Pi

,
P2∑7
i=1 Pi

, . . . ,
P7∑7
i=1 Pi

)
.

6. Finally, the respective elements of the coding signal
vector are averaged over all windows for a given
sequence. The sequence is coding in frame i if the i
position in coding signal vectors has the highest value.

3. Results
3.1 Detection of the coding signal

To check how the presented algorithm works on a real
DNA-sequence, two different genomes were chosen: Borre-



lia burgdorferi and Escherichia coli.
1) For a given organism the set of annotated genes was

divided randomly for two subsets (the learning set and
the test set);

2) After the training step algorithm (for model order h =
1) the tested sequences were analysed;

3) The results were compared with results obtained by
GeneMark version 2.5f (for model order h = 1 and
h = 2) which was also trained on the same learning
set.

3.1.1 B. burgdorferi genes
The set of annotated 474 sequences was divided randomly

for a learning set (200 sequences) and a test set (274
sequences). The results averaged over ten repetitions of
learning and test steps are presented in Table 1. The percent
of genes recognized as coding for the new method is equal
to 93% which is higher than for GeneMark of the same
order. However, the percentage increased significantly to
97% when we considered genes on the leading and lagging
strands separately, i.e. both the learning set and the test
set consisted of only genes from the same DNA strand.
Interestingly, the learning set contained only 10 genes in
this case.

Table 1: Averaged percent of genes recognized as coding in
B. burgdorferi

New method (h = 1)
- the whole set 93.4
- only lagging strand genes 97.0
- only leading strand genes 97.3
GenMark 2.5f
- the whole set (h = 1) 91.0
- the whole set (h = 2) 97.6

3.1.2 E. coli genes
The set of annotated sequence (2774-sequences) are di-

vided randomly for a learning set (1000-sequences) and a
test set (1773-sequences). Table 2 shows the results averaged
over ten repetitions of the whole procedure. The percent of
genes recognized as coding for the new method is higher
than for GeneMark of the same order and nearly equal to
the GeneMark result of the second order.

Table 2: Averaged percent of genes recognized as coding in
E. coli

New method (h = 1) 91.3
GenMark 2.5f (h = 1) 79.4
GenMark 2.5f (h = 2) 93.7

3.2 Small ORFs ranking
Recognition of the coding rhythm is especially difficult

and important when looking for protein coding sequences

among short ORFs. The number of such ORFs generated
inside other longer ORFs or in the intergenic sequences
is usually very high while the fraction of coding small
ORFs is relatively low [10]. In the genome of Streptomyces
coelicolor, there are 28917 ORFs of length 31 to 99 codons
and only 555 (∼ 2%) of them are annotated in the data
base as coding. In the left plot of Fig 2 we have shown the
distribution of all small ORFs from S. coelicolor genome
according to their positions in the ranking of coding proba-
bility where the positions of ORFs with annotated functions
are marked. In the right diagram of Fig 2 the numbers of
annotated ORFs in the consecutive classes of ranked small
ORFs are shown. The first 10% of the highest ranked small
ORFs contains 93% of all annotated ORFs.
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Fig. 2. Ranking of small ORFs. Left panel: distribution of
all small ORFs from S. coelicolor genome according to
their positions in the ranking of coding probability (line)
and positions of ORFs with annotated functions (marked
with open circles). Right panel: histogram of the numbers of
annotated ORFs in the consecutive classes of ranked small
ORFs.

4. Summary
The new method of protein coding sequences recogni-

tion works very efficiently with small number of learning
sequences and could be preferentialy used in analysis of
coding capacity in small genomes and short protein coding
sequences.
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M. Sobczyński, S. Cebrat, "Optimisation of asymmetric mutational
pressure and selection pressure around the universal genetic code",
Lecture Notes in Computer Science 5103, 100-109, 2008.

[7] M. Kowalczuk, P. Mackiewicz, D. Mackiewicz, A. Nowicka,
M. Dudkiewicz, M.R. Dudek, S. Cebrat, "DNA Asymmetry and the
Replicational Mutational Pressure", Journal of Applied Genetics 42 (4),
553-577, 2001.

[8] S. Cebrat, M.R. Dudek, P. Mackiewicz, "Sequence asymmetry as a
parameter indicating coding sequence in Saccharomyces cerevisiae
genome", Theory in Biosciences 117, 78-89, 1998.

[9] M. Borodovsky, J. Mcininch, "GenMark: pararell gene recognition for
both DNA strands", Comput. Chem. 17 123-133, 1993.

[10] A. Gierlik, P. Mackiewicz, M. Kowalczuk, M.R. Dudek, S. Cebrat,
"Some hints on Open Reading Frame statistics - how ORF length
depends on selection", Int. J. Modern Phys. C 10(4), 635-643, 1999.


