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1 Instituto de F́ısica, Universidade Federal Fluminense; Av. Litorânea s/n, Boa Viagem, Niterói 24210-340, RJ, Brazil
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Abstract. We discovered a dynamic phase transition induced by sexual reproduction. The dynamics is a
pure Darwinian rule applied to diploid bit-strings with both fundamental ingredients to drive Darwin’s
evolution: (1) random mutations and crossings which act in the sense of increasing the entropy (or di-
versity); and (2) selection which acts in the opposite sense by limiting the entropy explosion. Selection
wins this competition if mutations performed at birth are few enough, and thus the wild genotype domi-
nates the steady-state population. By slowly increasing the average number m of mutations, however, the
population suddenly undergoes a mutational degradation precisely at a transition point mc. Above this
point, the “bad” alleles (represented by 1-bits) spread over the genetic pool of the population, overcoming
the selection pressure. Individuals become selectively alike, and evolution stops. Only below this point,
m < mc, evolutionary life is possible. The finite-size-scaling behaviour of this transition is exhibited for
large enough “chromosome” lengths L, through lengthy computer simulations. One important and sur-
prising observation is the L-independence of the transition curves, for large L. They are also independent
on the population size. Another is that mc is near unity, i.e. life cannot be stable with much more than
one mutation per diploid genome, independent of the chromosome length, in agreement with reality. One
possible consequence is that an eventual evolutionary jump towards larger L enabling the storage of more
genetic information would demand an improved DNA copying machinery in order to keep the same total
number of mutations per offspring.

PACS. 05.70.Fh Phase transitions: general studies

1 Introduction

In the Eigen quasispecies model, the genome of an individ-
ual is modelled by a string of L bits [1]. If all bits are set to
zero (or to some arbitrary sequence defined as ideal), its
fitness measured by the number of offspring is the largest;
with some mutations its fitness is reduced. This model
leads for large L to the possibility of a transition such
that for small mutation rates an appreciable fraction of
the population has the ideal genome, while for large mu-
tation rates it leads to a mutation explosion (often called
“error catastrophe”) where an appreciable fraction of all
bits are mutated and similarity with the ideal bit-string is
lost. Life cannot be stable under mutation explosion. We
generalise this model here to an agent-based simulation
with sexual reproduction and compare its results with the
agent-based asexual model [2]. The main difference turns
out to be that for the asexual case the crucial quantity is
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the mutation rate per bit while for the sexual case it is
the mutation rate per bit-string.

The theoretical question posed in this work concerns
the length-scaling properties of chromosomes. Let’s call L
the chromosome length, an integer number measuring the
number of coding units along the chain, which for simplic-
ity we consider as a bit-string: 0-bits represent the wild
alleles, whereas 1-bits correspond to harmful mutations,
the “bad” alleles. The larger this length L is, the larger
is the space to store more genetic information. Therefore,
in principle, evolution should lead to species with larger
and larger chromosomes, of course with the same value of
L for all individuals belonging to the same species.

Consider first a simple case of haploid individuals
which reproduce through cloning. The chromosome of
each newborn is copied from an already alive individ-
ual, taken at random, plus an average fixed number m of
point mutations. Being an average over all newborns, this
number m is not necessarily an integer, it can be tuned
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continuously as explained later. One point mutation
means a 0-bit in the parent’s chromosome which is flipped
into a 1-bit in the offspring’s, or vice-versa. The position
where this mutation is performed is random. The wild
genotype corresponds to a bit-string where all bits are set
to zero. A mutation in the sense 0 → 1 makes the offspring
farther from the wild genotype than its parent, another
in the reverse sense makes it closer. A fixed birth rate b
defines the probability of each individual to produce an
offspring each new time step.

Let’s ignore any kind of correlation along the chromo-
some, i.e. the fitness of individual i depends only on a
single phenotype defined here as Ni, the total number of
1-bits in its genome. One individual with phenotype N +1
is at a disadvantage, when compared to another individual
with phenotype N . The disadvantage here corresponds to
a smaller survival chance: the probability to survive a new
time step is smaller for the former individual by a factor
of x, when compared to the latter, where x is a number
strictly smaller than 1. Therefore, the survival probability
for different individuals decreases for increasing N . This
number x measures the overall selection pressure, and can
be tuned in order to keep the population size constant,
i.e. to keep the death rate equal to the birth rate b. After
evolving for many generations the distribution of pheno-
types stabilizes. In order to keep the wild genotype (the
only for which the phenotype is N = 0) inside this equi-
librium distribution, the number of mutations m cannot
be too high.

Let’s now compare different chromosome lengths. One
can follow a simple and intuitive reasoning:

1) the length L is increased;
2) the same ratio m/L is kept;
3) after many generations, the steady-state population

presents the same distribution of phenotypes versus
N/L, independent of the (large enough) chromosome
length.

This expected behaviour is exactly what is obtained
by simulating this simple haploid, asexual model on a
computer [3,4]. Figure 1 shows an example of this be-
haviour [2].

The above-mentioned item 2) deserves an important
remark: the genetic storing media (the bit-strings) are
one-dimensional objects. Therefore, the average number
m of mutations should be scaled proportionally to L. As
a result, the whole genetic distribution curve and conse-
quently both its average 〈N〉 and its width 〈ΔN〉 also
scale proportionally to L (note the collapsed distribution
curves in Figure 1 plotted versus N/L, not N).

The reasoning and the corresponding simulational re-
sults do not cause any surprise. The purpose of this work
is to study a similar reasoning for sexual, diploid repro-
duction. Let’s pose the first question.

Should the same ratio m/L be kept for increasing chro-
mosome lengths?

The answer to this simple question is not so simple.
Intuition can betray who thinks about it. Sex deals with
half the genetic information inherited from each parent, a
nonlinear behaviour which requires prudence to avoid false

10−4

10−2

1

100

0.060.040.020

pr
ob

ab
ili

ty
 d

en
si

ty

genetic load (N/L)

L = 32, 64, 128, 256 and 512
b = 0.02

10−4

10−2

1

100

0.060.040.020

pr
ob

ab
ili

ty
 d

en
si

ty

genetic load (N/L)

L = 32, 64, 128, 256 and 512
b = 0.02

10−4

10−2

1

100

0.060.040.020

pr
ob

ab
ili

ty
 d

en
si

ty

genetic load (N/L)

L = 32, 64, 128, 256 and 512
b = 0.02

10−4

10−2

1

100

0.060.040.020

pr
ob

ab
ili

ty
 d

en
si

ty

genetic load (N/L)

L = 32, 64, 128, 256 and 512
b = 0.02

10−4

10−2

1

100

0.060.040.020
N/L)

L = 32, 64, 128, 256 and 512
b = 0.02

Fig. 1. Collapsed distributions of the individual genetic loads
N/L, for haploid, asexual reproducing populations with differ-
ent chromosome lengths. The probability density plotted along
the vertical axis is proportional to the number of individuals
sharing the same N . The full circles correspond to the largest
length L = 512. The mutation rate m/L = 1/320 ≈ 0.003 is the
same for all lengths, as well as the population size P = 10 000.

conclusions. Moreover, a crossing-over performed with ho-
mologous chromosomes within each parent’s genome indi-
cates that now the genetic information is no longer stored
along strictly one-dimensional objects: we should not trust
the linear reasoning leading to the fixed ratio m/L. Dom-
inance and recessiveness are further sources of doubts. In
order to answer this and many other related questions, we
present in the next sections the results obtained from com-
puter simulations of a population dynamics. Compared
to reality, the model is simplified in order to retain only
the fundamental features of sexual, diploid reproduction,
a pure Darwinian evolutionary rule with two basic ingredi-
ents: random mutations and crossings-over which tend to
increase the entropy (or diversity); and natural selection
which acts on the opposite sense by removing from the
population many of these mutations and, consequently,
preventing entropy explosion.

Section 2 treats the implementation of the model on
computers and its details. The following Section 3 deals
with the most important, conceptual results. Further re-
sults are in Section 4.

2 The model

The population size is artificially kept constant with P in-
dividuals, by killing a fraction b of them per time step and
restoring the same fraction with newborns which are off-
spring produced by the survivors. The set of P individuals
is considered a random sample picked from a much larger
population which can fluctuate in size, according to the
selective dynamics. This is particularly important in case
of extinction which occurs in the non-evolutionary phase
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discussed later. We verify that P = 103 or 104 is large
enough to make the statistical fluctuations satisfactorily
small for all quantities we have measured from our sim-
ulations. This P is also large enough to avoid inbreeding
depression [5,6]. We adopted P = 104 and b = 0.02 (2%).
The precise value of this fraction b is not important, pro-
vided it is small enough, because it is the artificial time
step of the dynamics. The value b = 0.02 simply means one
needs to wait for 50 time steps in order to complete one
generation replacement on average. We have also tested
b = 0.01 and 0.03 in some cases, with the same results.

The genetic information of each individual is kept on
the computer memory in two parallel bit-strings with L
bits each. We tested L = 32, 64, 128 . . . 16384. We also
keep on memory the histogram H(N) counting the cur-
rent number of individuals sharing the same N , the num-
ber of homologous loci containing at least one copy of the
“bad” allele, bit 1. This is the version where the 1-allele is
dominant along the whole genome, exemplified in the next
section. An alternative version, where the 1-allele is reces-
sive, is treated in the last section. At each time step, the
first process is the killing roulette, where each individual
i survives according to a probability xNi+1, as assumed in
numerous studies of population genetics. The number x
measures the survival probability for individuals with the
wild genotype, N = 0. For the others, the survival prob-
abilities exponentially decay with N . This is the model’s
selection ingredient. Note that x must be strictly smaller
than 1, otherwise all individuals will survive forever.

We follow the decades-long tradition of Eigen model
studies of keeping the population constant, at least on
average. For this purpose the value of x is tuned in order
to keep the population sample constant in size, and can
be obtained by solving the polynomial equation

∑

N

H(N)xN+1 = P (1 − b) (1)

before killing anybody. (As a technical remark, we cannot
use the solution of this equation if it surpasses some upper
bound, say xmax = 0.999: this limit simply imposes that
every individual must die some day, no matter how good
is its genetic patrimony. Extinction is the consequence of
imposing this upper bound, as we will comment in the
next section.) After the proper value for x is known, we
scan the population, i = 1, 2, 3 . . . P . A random number
ri inside the interval (0, 1) is tossed for each individual i:
if ri < xNi+1 it is kept in the population, otherwise it dies.

After deaths, the next task is to include (1− b)P new-
borns into the population. This is the diversity model’s in-
gredient. In order to construct a newborn diploid genome,
first we toss two random parents among the survivors.
(For simplicity, we do not consider different genders.) One
parent’s chromosome pair is copied and the following pro-
cedure is performed on the copy. An average number m
of random mutations are introduced. Each mutation acts
at a random position along one of the two chromosomes,
also taken at random. The corresponding bit is flipped
from its current state, i.e. from 0 to 1 or from 1 to 0.
The fixed number m is not necessarily an integer, as fol-
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Fig. 2. Phase transition for a population of 10 000 individ-
uals. For few enough mutations at birth, on the left side, life
is possible. Beyond mc = 1.0439, on the right side, the pop-
ulation displays a mutational explosion where all individuals
carry a number of “bad” alleles proportional to the chromo-
some length L. For the largest length, L = 1024, the inset
blows-up the transition region.

lows. We toss a random number M inside the interval
(0, 2m). Then, we perform just int(M) mutations, where
int(. . . ) means the integer part of the argument. After
that, with probability frac(M) we perform a last mutation,
where frac(. . . ) means the fractional part of the argument,
M = int(M)+frac(M). Also a total of c crossings-over are
performed on the diploid genome, where c is not necessar-
ily an integer as well: int(c) crossings are performed first,
and a last one with probability frac(c). The crossing po-
sition along the diploid genome is also tossed at random.
After the whole process of mutations and crossings, we
have two possible gametes. We choose one of them, also
at random, to be passed on to the newborn. The same pro-
cess is performed on the chromosome copies of the other
parent, leading to the second newborn gamete. Then, it is
included into the population.

In short, our model incorporates natural selection in
the step of deaths, and creates genetic diversity in the step
of births, completing in this way the Darwinian selection-
diversity paradigm.

3 Conceptual results

As we shall see later, the eventual result of this dynamic
process can be divided into two opposed possibilities, de-
pending on the fixed number m of mutations performed at
birth. Small values of m define the evolutionary phase: the
population continues its evolution forever. Large values of
m correspond to the non-evolutionary, extinction phase.
Figure 2 displays an example of such a phase transition,
the evolutionary phase on the left side, extinction on the
right.
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Fig. 3. Collapsed distributions of “bad” alleles among the
population, for different chromosome lengths. Note that N , dis-
played along the horizontal axis, is not divided by L, contrary
to the asexual case, Figure 1. In all cases, the number m of mu-
tations per offspring performed at birth is fixed far below the
transition value observed in Figure 2, i.e. m = 0.5, again not
divided by L. Would we fix the same mutation rate m/L, in-
stead of m, the plots would no longer collapse onto each other.
Moreover, in this case, for large L the curves would undergo
a run-away to the right as soon as the value of m surpasses
the critical point mc = 1.0439 of Figure 2, as explained soon.
The parameter controlling the phase transition is the number
of mutations m per offspring, not the mutation rate m/L per
locus and per offspring.

One time step is complete after the two processes of
deaths and births are performed, scanning the whole pop-
ulation twice. We start the simulation at time step t = 0 ,
with all bit-strings filled with zeroes (except for the hys-
teresis case shown later). The initial genetic distribution
corresponds to H(N = 0) = P and H(N �= 0) = 0. As
time goes by, 1-bits spread more or less over the popu-
lation, and H(N)/P eventually stabilises in some steady
state distribution as shown in Figures 3–6. The relaxation
time required for stabilisation increases for increasing L,
and also depends on the number m of mutations per-
formed at birth. Near the transition points like m = 1.0439
in Figure 2 the relaxation time is very large. The major-
ity of our results were taken with L = 1024, for which we
observed that 107 (ten million) time steps are enough,
and decided to adopt this number as default. In some
cases, specially for larger chromosome lengths, we have
done the simulations beyond this. Due to this extremely
slow convergence rate, each point of a plot like Figure 2
corresponds to approximately two entire processing days
on our fastest computer processor (AMD Opteron 250).
Recessiveness requires even more computer power.

Figure 7 is an example of the slow convergence rate.
Since the initial population has no 1-bits at all, the start-
ing average genetic load 〈N〉 is zero. The curves show
the evolution of 〈N〉/L for 4 different values of m. The
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Fig. 4. Distribution of “bad” alleles for different chromosome
lengths, as in Figure 3. Now, the number m of mutations per
offspring performed at birth is fixed just below the transition
displayed in Figure 2, m = 1. For large enough L the curves
also collapse onto each other, full symbols.

Fig. 5. The same as the previous two figures, now with
m = 1.0440, just above the transition displayed in Figure 2.
For large enough chromosome lengths, the distribution runs
away from the wild genotype represented here by N = 0. The
rightmost continuous line obtained for L = 1024 shows this
behaviour, the whole distribution being confined in between
the two vertical walls.

two lower curves correspond to m below but very near
the transition point mc, therefore still at the evolution-
ary phase. In this case, the fluctuations are large, denoted
by the error bars included only at some points for clar-
ity. The two upper curves correspond to m above but also
very near the transition point mc, therefore already at the
non-evolutionary phase. Now, one gets a not-so-slow con-
vergence, after which the fluctuations become smaller with
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above the transition. Now, they are plotted against the density
N/L, as in the asexual case of Figure 1. However, contrary to
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m/L kept fixed in Figure 1. The inset shows the corresponding
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Fig. 7. Time evolution for 4 different values of m, all of them
very near mc. Just below the transition (two lower curves)
the convergence is very slow. In this example, c = 1.5 and L =
1024. By increasing the chromosome length, the convergence of
the two lower curves becomes still slower. However, for large L,
the average genetic load 〈N〉/L goes to zero. Contrary to that,
inside the disordered phase one observes the two upper curves
already stuck to their final finite plateaux, independently of
the L value.

error bars of the same size of the symbols. Fluctuations
also become very small if one takes m below but not near
the transition (not shown).

We have identified the non-evolutionary phase on the
right side of Figure 2 as the extinction phase, although
the population sample is kept with constant size. In this

case, the genetic distribution among the population corre-
sponds to the sharp peaks displayed in Figure 6, centred
on 〈N〉 ∝ L, with a narrow relative width vanishing for
large enough values of L. Therefore, the last equation (1)
could be replaced by

x〈N〉+1 = 1 − b

for which the solution approaches x = 1 if we consider
large L and consequently large 〈N〉. However, we have
already seen that x should be strictly smaller than 1, lim-
ited by some upper bound, say xmax = 0.999, otherwise
nobody dies. This upper bound is surpassed when solving
equation (1) just when the run-away shown in Figures 5
or 6 occurs. Replacing its solution x by a lower value xmax

leads to extinction. In this way, as soon as the number m
of mutations performed at birth surpasses the transition
point mc, not only Darwin evolution stops because all in-
dividuals become selectively alike, but also extinction is
the next step. Therefore, within the model, we don’t need
to observe a real extinction of the population sample in
order to identify the extinction already in course for the
whole population, the genetic run-away or “error catas-
trophe” suffices, and we can forget the limit xmax. That
is why we adopt the interpretation of a fixed-population
sample representing a much larger fluctuating population,
by tuning the value of x. This interpretation is valid as
far as x does not approach unity, i.e. before the run-away
characterising the non-evolutionary phase above mc. This
approach of tuning x in order to keep constant the pop-
ulation sample goes back to [7]. For smaller values of L
(≤64), simulations [8] with fixed x and varying P give
different behaviour.

Figure 2 shows a computer-simulated result of this
model. It considers a sexually reproducing population,
with individual genomes subjected to random mutations
as well as crossing-over during reproduction, under a se-
lective environment. Homologous chromosomes are repre-
sented by double, diploid bit-strings consisting of 0-bits
(the wild type) and 1-bits (the “bad” allele). The quan-
tity we consider for selection is the total number N of loci
containing at least one “bad” allele; the larger N is, the
smaller is the individual’s fitness. Data in Figure 2 cor-
respond to the average over 10 independent stable pop-
ulations (after many enough generations). All other data
presented in this paper also correspond to the average over
10 independent populations. Error bars were determined
from fluctuations between these 10 samples.

Figure 2 shows plots for different chromosome lengths,
and one verifies at the left side the corresponding curves
approaching the horizontal axis for larger and larger L.
The average genetic load 〈N〉/L, where the symbol 〈. . . 〉
means population average, vanishes for large enough chro-
mosome lengths along all this phase, m < mc.

Instead, on the right side of Figure 2, the curves go
up. By increasing the chromosome length, they converge
to the universal curve displayed by full-circles (L = 1024).
The average genetic load is no longer null, because 〈N〉 be-
comes proportional to L: life through Darwinian selection
becomes impossible, as explained below.
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Figure 3 shows the distributions of homologous loci
containing “bad” alleles. For larger and larger chromo-
some lengths, all curves collapse into a single one. The
data are collected below the transition, deeply inside the
ordered phase on the left side of Figure 2, m = 0.5. The
typical number 〈N〉 of loci containing the “bad” allele
(〈N〉 < 5 in Fig. 3) remains the same in spite of the in-
creasing chromosome lengths. That is why the curves go
down on the left side of Figure 2 as

〈N〉
L

∝ L−1

where the symbol ∝ represents proportionality. The expo-
nent −1 governs the finite-size-scaling of the genetic load
〈N〉/L, and is our first important result.

Figure 4 shows again the N -distribution for the same
transition displayed in Figure 2. Now, the average number
of mutations performed at birth is m = 1 for all chromo-
some lengths, very near but still below the transition point
mc = 1.0439 of Figure 2. The typical number 〈N〉 ≈ 5 of
loci containing the “bad” allele is larger now, when com-
pared with Figure 3. However, it also remains the same for
increasing chromosome lengths. Note also that the “opti-
mum” configuration N = 0 is still present, although with
a small frequency.

At each new time step, a fraction b of new individu-
als are included into the population. We adopted b = 2%.
Their genomes are taken from random parents, with mu-
tations. Since the number of 0-bits among the population
is much larger than that of 1-bits, these mutations oc-
cur more likely in the sense 0 → 1 (“bad” mutations)
than in the reverse one, as in Nature. This asymmetry
tends to shift the curves like Figure 4 to the right, in-
creasing its rightmost parts. Selection, which eliminates
the same fraction b of individuals from the population,
within the same time step, tends to shift the curves back
to the left, in a compensatory movement. The figures show
the steady-state situation, where the distribution remains
the same after both movements were performed, i.e. after
each computer time step with deaths and births. These
two opposed movements, however, come from different in-
gredients of the Darwinian paradigm: the first (shifting
the curve to the right) from random mutations which we
control through the parameter m; the second (back to the
left) from the selection pressure which is always the same,
since we keep the death rate b constant. Therefore, by
further increasing m, this balance which keeps the wild
genotype alive will become impossible.

Figure 5 corresponds to m = 1.0440, just beyond the
transition. Indeed, the curves falsely seem to obey the
same kind of convergence displayed in Figure 3 or 4, up
to L = 512. Suddenly, however, for L = 1024 the dis-
tribution escapes towards a finite-density 〈N〉/L of loci
containing the “bad” allele, shown by the rightmost curve
where 〈N〉 ≈ 140 (note the cut on the horizontal axis).
The distribution curve runs away from the wild genomic
form N = 0, which becomes extinct. This is the same
phenomenon which occurs in Eigen-type models [1], some-
times called the “error catastrophe”. Now, the typical

number 〈N〉 of loci containing “bad” alleles grows propor-
tionally to L: would we plot the distribution for L = 2048,
the corresponding bell-shaped curve would be positioned
around 〈N〉 ≈ 280, far to the right, not visible in Figure 5;
for L = 4096 it would fall around 〈N〉 ≈ 560, far yet to the
right, and so on. We cannot show all these curves on the
same plot: even for L = 1024 we were forced to perform
the artificial cut on the horizontal axis.

In order to see the distribution curves for different
chromosome lengths above the transition, we therefore
replace (on the horizontal axis) the number N of loci
containing the “bad” allele by its density N/L along the
genome. Figure 6 shows the result for m = 1.5.

The widths ΔN/L of these distributions shrink for
larger and larger chromosome lengths. Therefore, for large
enough values of L, all individuals share the same genetic
load 〈N〉/L, within negligible fluctuations. Individuals no
longer show different selectivities when compared to each
other, all individuals become alike in what concerns the
selection pressure. Darwinian evolution cannot proceed for
m > mc. This side of the transition is the non-evolutionary
phase, and corresponds to population extinction already
discussed in the previous section.

Figure 7 shows the slow evolution of the average ge-
netic load 〈N〉/L near the transition.

In short, the transition point mc separates two phases,
for large L. Region m < mc represents the evolutionary
phase where the typical number 〈N〉 of “bad” alleles re-
mains the same for increasing chromosome lengths: the
average genetic load 〈N〉/L vanishes. The other phase,
m > mc, is non-evolutionary and behaves differently: 〈N〉
increases proportionally to L, the genetic load no longer
vanishes, and the genetic pool no longer includes the wild
genotype N = 0. Note again that the transition occur-
ring at mc is controlled by the number of mutations m
(per genome), not by the mutation rate m/L (per genome
unit) , and consequently the transition point mc remains
the same, independently of how large is L.

A dynamic phase transition corresponds to the compe-
tition of different possible attractors to which the steady-
state population converges after many generations. In our
case, one attractor is characterised by the presence of the
wild genotype N = 0, which is preserved only in the
ordered phase m < mc. We may call this evolutionary
phase “ordered” by analogy with Physics where order-
disorder transitions of this kind are ubiquitous, and also
because the whole steady-state population remains “or-
derly” similar to the wild genotype, everybody with a van-
ishingly small fraction of “bad” alleles. On the other phase
m > mc, the population genetic pool melts into a disor-
dered situation characterised by the absence of the wild
genotype N = 0, everybody presenting a non-vanishing
fraction of “bad” alleles. The selection mechanism is no
longer able to contain the entropy explosion driven by too
many random mutations at birth. Therefore, here we will
call 〈N〉/L the dis-order parameter which characterises
the transition, being non-null only at the disordered phase.
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Fig. 8. Similar to Figure 2, for the recessive case, with L
increasing from bottom to top on the right. Now, N is the
number of homozygous loci with both bad alleles. The inset
blows-up the transition region for L = 1024 (full circles), 2048
(open circles) and 4096 (squares). In spite of the large chro-
mosome lengths, the collapse of all curves onto a single one is
not yet obtained. It should appear beyond L = 4096, defining
the transition point (note the negative curvature which already
appears for this length, when the full squares jump from zero
to higher values, near m = 2).

4 Further results

4.1 Recessiveness

Alternatively to the 1-bit dominance, the phenotype N
of each individual can be counted as the number of loci
where both homologous alleles are 1-bits. This is the re-
cessive version, much more interesting from the biological
point of view. It allows a much larger degree of genetic
diversity among the population, since heterozygous loci
do not represent any handicap for the individual survival.
Figure 8 is the would-be equivalent of Figure 2 in this
case.

Larger chromosome lengths are necessary in order to
observe the collapse of all curves onto a single one, which
starts beyond L = 4096. These plots correspond to 2×107

time steps and P = 10 000, which were enough to obtain
convergence in the case of dominant 1-bit allele, Figures 2
to 7. Now, it is clear that these time and population size
may be no longer enough. For instance, from these plots,
Figure 8, one could wrongly infer a transition point near
mc ≈ 2. As a test, we have run much longer times for
smaller populations P = 320, 1000 and 3200, and verified
the appearance of the sudden run-away already for smaller
values 1 < mc < 2, Figure 9. Some kind of staircase seems
to appear within this interval, which is an indication that
some of the 10 independent populations considered in the
averaging process have already undergone the run-away
while others did not at the same time step. This behaviour
also indicates the presence of hysteresis, shown in detail in
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Fig. 9. Test runs with much larger times than Figure 8 (with
smaller populations), showing the run-away (extinction phase)
already appearing below m = 2.

next subsection. In this case, Figure 9, each point of the
plot (P = 3200) consumes more than a month of computer
time, and even so we cannot be sure that all 10 indepen-
dent populations were already genetically stabilized.

When, in contrast with the 1-bit allele dominant case
(Fig. 2), recessiveness is turned on (Fig. 8) the current
state of our simulations cannot precisely define the point
where the phase transition occurs. However, this does
not mean our simulations are useless for the recessive
case. The phase transition certainly occurs in some point
1 < mc ≈ 2, and we can use the populations leading
to Figure 8, for instance, in order to compare the fea-
tures and differences between the survival and extinction
phases. This is done in the two next subsections.

4.2 Crossing-over

Figures 2 and 8 correspond to just one crossing-over per-
formed during the gamete formation, i.e. c = 1. We have
also tested other values.

Figure 10 corresponds to c = 0, i.e. no crossing at
all, for the case where the 1-bit allele is dominant, to be
compared with Figure 2.

Now, the transition is clearly a first order one, with
a big gap on the dis-order parameter at mc. However,
also Figure 2 seems to display a first order transition, but
weaker as displayed in its inset there.

Also without crossing, more interesting is the case
where 1-bits are recessive, Figure 11. For the lower branch,
filled circles, we start the whole process with m = 1 and
all initial chromosomes filled with 0-bits. The first point
on the left side corresponds to the resulting populations
after 107 time steps. Then, starting from these popula-
tions, we tune m = 1.05 and run other further 107 time
steps, getting the second point on the left side, and so on,
increasing m in steps of 0.05, following the lower branch.
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Fig. 10. First order phase transition without crossing (c = 0),
for dominant 1-bit alleles, to be compared with Figure 2.
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Fig. 11. Hysteresis without crossing (c = 0), for recessive
1-bit alleles.

Only when we reach m = 4.2 the gap on the right side
appears, and the fluctuations among the 10 independent
populations become large, as denoted by the error bars.
Soon the fluctuations shrink again at m = 4.35, and we
reach the non-evolutionary phase displayed by the last
four filled circles up to m = 4.5.

Now, we do the reverse path, upper branch, starting
from m = 4.5 again, with all initial chromosomes filled
with 0-bits. After 107 time steps we have already reached
the non-evolutionary phase, rightmost open square (at the
same position of the rightmost filled circle obtained before,
which thus does not depend on the starting populations).
Then, starting from these already stabilized populations,
we tune m = 4.4 and run other further 107 time steps,
getting the second rightmost open square (also coincident
with the filled circle branch), and so on, decreasing m

Fig. 12. Crossing destroys the hysteresis.

and running more 107 time steps for each new value. The
result is the upper branch displayed by the open squares.
Only when we reach m = 1.55 this branch goes down
following the gap at the left side, where the fluctuations
(error bars) become visible again. At the end of this gap
downwards, the upper branch meets again the lower one.
In between m1 ≈ 1.4 and m2 ≈ 4.2 the system displays
a clear bi-stability, the equilibrium population depending
on the initial one. For any fixed value of m within this
interval, the population goes to the evolutionary phase if
the genetic load of the initial population is small enough.
Otherwise, it goes to the non-evolutionary phase, for the
same fixed m.

The presence of crossing-over destroys this behaviour,
as shown in Figure 12 for c = 1. Now, both branches are
indistinguishable, there is no hysteresis.

Finally, a larger number of crossings seems to have no
effect, Figure 13; that means we swapped between the two
bit-strings not only the parts on the two sides of one single
crossing point, but allowed for several such crossing points
with corresponding swaps of parts of the bit-strings.

4.3 Heterozygosity

With crossings and recessive 1-bit allele, Figure 14 shows
the heterozygosity, i.e. the fraction of heterozygous loci
averaged over all individuals of all 10 independent popu-
lations after 107 time steps, as well as the corresponding
fractions of both homozygous loci 11 and 00 (homologous
loci filled with the same allele 1 or 0).

Figure 15 shows again the recessive case, now without
crossing and near the upwards jump on the right side of
Figure 11. At the extinction phase, the heterozygosity is
simply random.

Figure 16 also refers to the case of Figure 11, now near
the downwards jump on the left side. Again, the heterozy-
gosity is random at the extinction phase.

Comparing Figure 14 where crossing is present to Fig-
ure 15 or 16 where c = 0, one concludes that crossing



P.M.C. de Oliveira et al.: Does sex induce a phase transition? 253

0.02

0
2.52

av
er

ag
e 

ge
ne

ti
c 

lo
ad

 (
<

N
>

/ L
)

mutations per offspring (m)

recessive 1−allele
L = 1024
b = 0.02
c = 2 and 4

0.02

0
2.52

av
er

ag
e 

ge
ne

ti
c 

lo
ad

 (
<

N
>

/ L
)

mutations per offspring (m)

recessive 1−allele
L = 1024
b = 0.02
c = 2 and 4

Fig. 13. As previous figure but now obtained for more than
one crossing, c = 2 (triangles) and c = 4 (open circles).
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Fig. 14. Heterozygosity (open circles), homozygosity 11 (filled
circles), and homozygosity 00 (triangles), with one crossing as
in Figure 8.

has a fundamental role: homozygosity 00 dominates the
population within the evolutionary phase, at the very left
side of Figure 14. On the other hand, without crossing,
heterozygous individuals occupy a large fraction of the
surviving population at the evolutionary phase, left side
of Figure 15 or 16. However, the presence of heterozygosity
on the evolutionary phase does not mean a larger genetic
diversity. On the contrary, without crossings, diploid indi-
viduals tend to get two complementary homologous chro-
mosomes, an example of which is

A 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1

B 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0

where homozygous 00 and 11 loci are not shown for clar-
ity. (Both do not matter for our following argument: 11
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Fig. 15. Heterozygosity (open circles), homozygosity 11 (filled
circles), and homozygosity 00 (triangles), without crossings. If
the bad alleles were randomly distributed the heterozygosity
would be given by the full line.
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Fig. 16. Heterozygosity (open circles), homozygosity 11 (filled
circles), and homozygosity 00 (triangles), without crossings.

because it is anyway virtually absent from the evolution-
ary phase, according to Figure 15 or 16; and 00 because
it does not mean any handicap.) The same kind of com-
plementarity was also found in [9,10].

In spite of its many “bad” genes, the above-exemplified
individual has no handicap at all! Forget mutations for a
while, and consider that all individuals become like this
AB example. (This is not impossible, inbreeding helps.)
Without crossings, their offspring are two-fold: those ex-
actly like the parents (which survive), or those suffering
from a strong handicap (which die). Surviving newborns
are clonings from their parents, all of them genetically
identical to each other. Evolution stops.

Crossing-over, on the other hand, avoids the popula-
tion to reach this genetic trap. Homozygosity 00 can be
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restored from heterozygous individuals. The consequence,
as shown in Figure 14, is that all individuals remain ge-
netically near (or at) the “optimum” state. Nevertheless,
the population as a whole keeps the necessary genetic di-
versity to evolve: individuals with (nearly) complementary
homologous chromosomes are exceptions, not the rule.

5 Conclusions

We have considered the evolution of sexual reproducing
populations under a strict Darwinian-Mendelian prescrip-
tion. Our model is one of the sexual generalisations [11,12]
of the asexual Eigen quasispecies model. Gene transfer
within haploids was also recently studied [13]. As in the
original model [1] we work with a single-peak fitness and
consider only a constant-size sample picked from the total
population [14,15]. Each individual carries a pair of diploid
chromosomes with length L. Random mutations at birth
are performed as well as crossings-over. The selection pres-
sure removes more likely from the population individuals
with higher numbers of harmful mutations. We have in-
vestigated the L-scaling properties and discovered a phase
transition occurring at a sharply defined number mc ≈ 1 of
mutations performed at birth, the same value independent
of the (large enough) chromosome length L. If the average
number m of mutations per offspring remains below mc,
then the whole population survives. Above mc the popula-
tion undergoes a genetic meltdown, the number of harm-
ful mutations explodes for all individuals (Eigen catastro-
phe [1]), and finally the whole population is extinct. This
behaviour comes from the dynamics of Darwin’s evolu-
tion itself, under Mendel’s genetic heritage rules, nothing
more. Thus we believe it is completely general.

The interesting point is that the average number of
mutations m performed at birth is the important param-
eter controlling the phase transition, not the mutation
rate per bit m/L. In reality, the DNA-copying chemical
machinery is the same for all living beings, and works as a
zipper scanning the whole chromosome length L. There-
fore, apart from further error-correction mechanisms, the
number of “errors” (mutations) should be proportional to
L. This behaviour imposes a limit on L, in order to keep
the number of mutations below the extinction transition
point. Thus, according to our model it is not possible to
evolve by simply increasing the chromosome length in or-
der to store more and more genetic information, which will
require an improvement on replication fidelity. Perhaps
this feature explains why big animals have their genetic
information stored in more-than-one chromosome pair (23

for humans). Moreover, considering only the coding parts
of our genetic information, the real number of mutations
per genome [16–19] is indeed below or near mc ≈ 1, in
agreement with our results.

Also interesting is the absence of such a transition for
haploid, asexual reproducing populations [2]. In this case,
the same genetic meltdown also occurs, but it can be cir-
cumvented by artificially increasing the population pro-
portionally to Lα, with α ≈ 2.3 [2]. For the present case
of sexual reproducing populations, the transition remains
no matter how large are the populations we have tested.
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4. P.M.C. de Oliveira, J.S. Sá Martins, D. Stauffer, S. Moss
de Oliveira, Phys. Rev. E 70, 051910 (2004); also in
www.arXiv.org: cond-mat 0308617 and www.vjbio.org,
Vol. 8, Issue 11

5. A.O. Sousa, S. Moss de Oliveira, A.T. Bernardes, Physica
A 278, 563 (2000)

6. K. Bońkowsha, M. Kula, S. Cebrat, D. Stauffer, Int. J.
Mod. Phys. C 18, 1329 (2007)

7. P.M.C. de Oliveira, www.arXiv.org: cond-mat 0101170,
short version in Theory in Biosciences 120, 1 (2001);
P.M.C. de Oliveira, Physica A 306, 351 (2002); also in
www.arXiv.org: cond-mat 0108234

8. D. Stauffer, S. Cebrat, Adv. Compl. Syst. 9, 146 (2006)
9. M. Zawierta, P. Biecek, W. Waga, S. Cebrat, Theory in

Biosciences 125, 123 (2007)
10. A. Pȩkalski, Int. J. Mod. Phys. C 18, 1690 (2007)
11. D. Alves, J.F. Fontanari, J. Physics A 30, 2601 (1997)
12. E. Tannenbaum, Phys. Rev. E 73, 061925 (2006); see also

J.S. Wilkins, History and Phylosophy of the Life Sciences
28, 389 (2006)

13. J.-M. Park, M.W. Deem, Phys. Rev. Lett. 98, 058101
(2007)

14. K. Malarz, D. Tiggemann, Int. J. Mod. Phys. C 9, 481
(1998)

15. F. Bagnoli, M. Bezzi, Int. J. Mod. Phys. C 9, 999 (1998)
16. J.W. Drake, Proc. Natl. Acad. Sci. USA 88, 7160 (1991)
17. N.A. Moran, A. Mira, Genome Biology 2, 0054.1 (2001)
18. A.J. Fry, J.J. Wernegreen, Gene 355, 1 (2005)
19. F.M. Salzano, An. Acad. Bras. Ciênc. 77, 627 (2005)
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