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We have modified the Penna standard sexual model in such a way, that the state of
each individual has been determined by the individual fluctuation and the fluctuation of
the environment. If the sum of both fluctuations is higher than the assumed limit, the
organism dies. Additionally, the individuals can learn the trends of the environment’s
fluctuations, diminishing their deleterious effects. This mechanism leads to the higher

mortality of the youngest individuals and the lowest mortality of individuals just before
reaching the minimum reproduction age. These phenomena are observed in any mortality
curve describing the age structures of human populations.
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1. Introduction

In the standard Penna ageing model with sexual reproduction,1–3 individuals are

represented by two bitstrings (haplotypes). Bits at the same position in the bit-

strings represent alleles and are switched on simultaneously and chronologically

which means that the age of individual corresponds to the number of switched on

loci. The genetic death in the model is determined by the threshold number T of

switched on defective genes (bits set for 1 in both loci at the same position). That

is why the standard version of the model cannot predict the higher mortality rate

of the youngest individuals. However, the phenomenon of the higher mortality of

newborns is well known in the natural populations. The genetic defects are respon-

sible for a fraction of cases of the newborns’ deaths, but the other fraction probably

is caused by the stress connected with the adaptation of new organisms to the quite

new environment. The results of higher mortality of the youngest organisms can be

obtained in the Penna model by introducing some additional assumption into it.

Berntsen4 has assumed lower threshold T of defective genes for the “babies”. Strot-

man, as cited in Ref. 2, has assumed that the number of genes switched on in one

time unit during the childhood is higher than during the later periods of life. Keep-

ing the same assumption as Strotman and additionally introducing genes which are

switched on in the period between the conception and the birth, Niewczas et al.,5
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have got the effect of spontaneous abortion at the level corresponding to the mortal-

ity of the human embryos6,7 and the increased mortality of the youngest individuals.

Higher mortality of the youngest organisms (still above the age corresponding to

the threshold T ) could be also predicted by the Penna model simulations when the

recombination rate between haplotypes during the gamete production is reduced.8

Nevertheless, the genetic death in the model cannot occur before the threshold T is

reached. In the modified, so called “noisy” Penna model9 the newborns can die dur-

ing the first time unit even if T is higher than 1. It is possible because the “health

status” of individual fluctuates (we prefer to use the term of homeodynamics12

for description of such a dynamic state of living systems instead of homeostasis.)

If fluctuations pass beyond the limits set for homeodynamics, the organism dies.

However, this mortality is still lower for the youngest individuals when comparing

with older fractions.

In the model presented below we have assumed that individuals after the birth

can “learn” the new environmental conditions. The learning process corresponds to

the immunization of young organisms.

2. Model

Consider a population of N individuals. In the noisy Penna model9 the state of

ith individual in time t is an extrapolation of two factors, the inner state of the

individual is denoted as Pi(t) and the state of the environment is denoted as E(t),

thus

Ii(t) = E(t) + Pi(t) . (1)

The individual dies if its state crosses the level of homeodynamics Ii(t) ≤ F . Both

E(t) and Pi(t) are Gaussian stochastic processes with means µE(t) and µPi
(t) equal

to zero. The variation of E(t) is constant and equal to σ2
e since the variation of Pi(t)

is equal to σ2
i (t) and increases with increasing number of expressed defective loci.

This model behaves in similar way as the well known standard Penna model with

sexual reproduction.1,9 Thus, during the evolution of population, the defective alle-

les are accumulated in the loci expressed later during the lifespan — after reaching

the minimum reproduction age. The mortality curve shows the lowest mortality for

the youngest individuals and increased to 1 for the oldest ones.

In this paper we have introduced the learning mechanism into the noisy Penna

model. The mechanism is designed to mimic the immune system. We have put a

signal into the environment and have equipped the individuals with a possibility to

learn this signal.

The signal in the environment is introduced as a nonzero periodic function

µE(t + D) = µE(t) with period D. Thus, the average value of the environment

state changes periodically.

A newborn individual does not know the signal, but during its life it learns

the expected value of the signal. There are many different ways to introduce the
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learning mechanism. We have assumed that realistic learning mechanisms fulfill the

following conditions:

• the learning process starts at the time of birth of the individual and the knowledge

about the signal is not inherited,

• the accuracy of learning is an increasing function of age (on average, the older

individuals better predict the value of the signal),

• after some time of the learning process, if the state of environment is unnoised,

the individual approaches the perfect knowledge of the signal value i.e., µE(t),

• the last remembered period has higher impact on the learning effect than earlier

periods.

We chose the weighted averaging as the mechanism that fulfills all above-

mentioned conditions. The individual predicts a state of the environment as the

weighted average from the survived periods

µPi
(t) =

∞∑

j=1

L(i, t− j ∗ D)wjE(t − j ∗ D)

where L(i, t) = 1 if individual i has been living at time t and 0 otherwise, weights

wj are decreasing

wj = e−(j−1)/λ
− e−j/λ ,

since E(t − j ∗ D) is the state of environment in time t − j ∗ D (that is j periods

before t).

The λ coefficient corresponds to the speed of learning. If this coefficient is low

then individuals learn intensively but mainly from the latest periods, otherwise, if

this coefficient is high, the individuals learn slower, from larger number of periods

with more balanced weights.

In comparison to the noisy Penna model only the means µE and µPi
are modi-

fied. During the simulations in each step and for each individual the state Pi(t) is

computed with experienced states of E(t)) taken into the consideration. Then the

state of E(t) is computed and individuals for which extrapolation of these states

crossed the homeodynamic level are killed. Survivors which are in the reproduction

age (their age is larger than R) mate and produce B children per pair. Reproduction

follows exactly the Penna algorithm — random mutations, recombinations and ran-

dom choosing the partner. A Verhulst factor is introduced to control the birthrate:

V = 1 − Nt/Nmax, where V describes the survival probability of the newborn, Nt

corresponds to the actual size of the population and Nmax is called the maximum

capacity of the environment.

The learning of the environmental signal reduces the deleterious effects of the

environment changes and decreases the mortality rate. But very young individuals

who have not managed to learn the signal die more often than a little bit older

individuals with “more experience”.
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3. Results

All simulations have been performed for diploid genome with haplotypes L = 64

bits long. The reproduction age was set to R = 10, the number of offspring per pair

was B = 1.

The signal in the environment has been modeled as sinusoidal rhythm µE(t) =

A ∗ sin(t ∗ 2π/D). The amplitude of signal was A = 2 and period D = 12 if not

otherwise noted.

The most adequate plot to compare results of different simulations is the Gom-

pertz plot,10 showing the logarithm of mortality rate of individuals at given age as

a function of their age.

In Fig. 1 we plot results for different λ’s. The environmental noise is relatively

small, σe = 0.3, in comparison to the signal. (Here and later, the horizontal axis

gives the age and the vertical one the mortality.)

If the amplitude of signal is high and the environmental noise is low (the lower

plot in Fig. 1) we see that differences in mortality occur only in early stages of

life while for individuals older than 10 years, the mortality does not depend on λ.
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Fig. 1. Mortality curves for different λ’s. The mortality is defined as the fraction of individuals
that die in given age. On the upper plot the amplitude of signal and noise are A = 1, σe = 0.5
respectively. Results presented on the lower plot are for A = 2 and σe = 0.3, respectively, except
the bold solid line which corresponds to A = 0 i.e., lack of signal. Lines marked as λ = 0 correspond
to the lack of learning (i.e., all wj = 0).
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Fig. 2. Mortality curves for speed (λ = 2) and slow (λ = 0.5) learning for different noise/signal
ratios.

After this time in all scenarios individuals learn the signal and if the σe is small,

individuals predict the environment nearly perfectly. The mortality in early stages of

life depends on λ. For higher λ (slow learning) there is higher mortality of newborn

babies than for small λ. This conclusion is true for the low noise/signal ratio and

it cannot be transferred to the case when noise/signal ratio is high. In the upper

part of Fig. 2 we see that high noise in connection to fast learning results in higher

mortality.

It is easier to notice the differences in results if differences in signal/noise ratio

are larger. Compare plots in Fig. 2. In the lower one the noise is small in comparison

to the signal; in this case we have got lower mortality if the learning is fast. On

the upper figure the noise is high and signal very low. Then, in fact, the speed

learning may be even harmful to the individual. The slower learning corresponds

to the lower mortality.

The goal of introduction of the learning mechanism is to obtain the results of

simulations which better fit to the real data. In Fig. 3 we present the rescaled results

of simulations and demographic data for German population.
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Fig. 3. Mortality curve and age structure for recent demographic German data and the simulated
data.

4. Discussion

In this paper we have simulated only one mechanism which could be connected with

the phenomenon of higher mortality of the youngest people. In fact, this mechanism

rescues organisms from the deleterious influence of the unfriendly environment. In

the model, organisms can learn the periodic signal of the environment which could

corresponds to the immunization and their higher mortality is observed in the period

before they successfully recognize an environmental signal. This mortality could be

considered as random death rather than the genetic death. It should be remembered,

that if random death is assumed in the population evolution, it is the best if the

youngest individuals preferentially die because of it.11 In Nature, there are other

causes of early death — genetic defects. In the standard Penna model genes in the

genomes of individuals are checked chronologically, that is why a newborn, before

checking the first locus for defects, has a perfect genetic status. The same problem

in our model still exists. In the real world, for example in the human populations,

newborns have a large fraction of genes already expressed and the most of defective

phenotypes are eliminated before birth (estimated 95%). It is also estimated that

in the European population about 1% of babies is born with monogenic defects

(diseases caused by a defect in only one gene or both genes in one pair of alleles)
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and about 0.5% is born with chromosomal aberrations (lost or translocated larger

fragment of the chromosome).7 These babies are much more often hospitalized

than babies without any genetic defects and we expect that these babies should be

much more susceptible for the influence of the hostile environment. In the previous

paper,5 where about 75% of genes were expressed before birth, the newborns were

not genetically perfect any more. It would be interesting to check, how the learning

mechanism switched on after birth influences the accumulation rate and frequency

of deleterious genes expressed before and after the birth in the evolving populations.

Such simulations would be more demanding for computing power.
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