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Abstract. One of hypotheses explaining the origin of the genetic code
assumes that its evolution has minimised the deleterious effects of mu-
tations in coded proteins. To estimate the level of such optimization,
we calculated optimal codes for genes located on differently replicating
DNA strands separately assuming the rate of amino acid substitutions in
proteins as a measure of code’s susceptibility to errors. The optimal code
for genes located on one DNA strand was simultaneously worse than the
universal code for the genes located on the other strand. Furthermore,
we generated 20 million random codes of which only 23 were better than
the universal one for genes located on both strands simultaneously while
about two orders of magnitude more codes were better for each of the
two strands separately. The result indicates that the existing universal
code, the mutational pressure, the codon and amino acid compositions
are highly optimised for the both differently replicating DNA strands.

Keywords: genetic code, error minimization, adaptation, asymmetric
mutational pressure, amino acid usage, leading strand, lagging strand.

1 Introduction

There are three main groups of hypotheses trying to explain the origin and
evolution of the genetic code: chemical, historical and adaptive (see for review
[1,2,3]). The first one assumes some structural and physicochemical relationships
and interactions between stretches of RNA (codons, anticodons, reversed codons,
codon-anticodon double helices etc.) and coded amino acids [4,5,6]. So far, a well-
confirmed relationship has been found for seven of eight amino acids (see for
review: [7]). The second hypothesis states that codons in the simpler, ancestral
genetic code coded for only a small subset of amino acids and later, along with the
evolution of biochemical organization of primary cells, newly synthesised amino
acids took over the codons from the amino acids to which they were related
in biosynthetic pathways [8,9,10,11,12]. The third group of hypotheses assumes
that the codon assignments could initially vary and it was the selection pressure
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which optimized the code to reduce harmful effects of mutations occurring during
replication and transcription (lethal-mutation hypothesis) and to minimize errors
during translation process (translational-error hypothesis), [6,13,14,15,16,17,18];
see for review: [19].

Primordial organisms whose code reduced the deleterious effects of errors won
eventually the competition and survived. During further evolution connected
with the increase of genome size, the genetic code was frozen [20] and it was not
possible to re-interpret the meaning of any codon because the whole complex
translational machinery was already adapted to the code and every such change
would have catastrophic consequences for the organisms. Nevertheless, some op-
timization took place already in the first stages of the genetic code evolution,
probably before ,,freezing”. One optimization results directly from the simple
structural relationships between nucleotides in the double helix - one large and
one small nucleotide fit better to form a pair. Thus, transitions which happen
with much higher frequency than transversions have much less deleterious mu-
tational effect than transversions. Actually, it was shown that the genetic code
is well adapted to the transition/transversion bias [16].

Assuming the adaptive hypothesis of the genetic code evolution we expect that
if the genetic code was ,,frozen” at an early stage of evolution when genomes
were relatively small, it is the code itself that imposes further restrictions on
the mutational pressure, amino acid and codon usage, and the translational
machinery in order to minimize the deleterious effects of mutations. Thus, the
mutational pressure cannot be completely random, as one could claim, but it is
highly biased and it cooperates with the selection pressure on amino acid and
codon usage to minimise the harmful effects of nucleotide substitutions. One of
the premises is that the most ,,mutable” codons in the genome correspond to
the least-represented amino acids [21,22]. Monte Carlo simulations showed that
changing of parameters of any of the three counterparts of the coding functions:
relative nucleotide substitution rates in the mutational pressure, the way the
genetic code is degenerated or the amino acid composition of proteomes increases
the deleterious effects of mutations in studied genomes [23].

However, it is not simply to optimise the mutational pressure. The muta-
tional pressures acting on the differently replicating (leading or lagging) DNA
strands show different patterns of nucleotide substitutions and leads to the strong
bias (asymmetry) in nucleotide composition between the two DNA strands ob-
served in almost all bacterial chromosomes [24,25,26,27,28,29] and long regions
of eukaryotic chromosomes [30,31,32]. Therefore, genes are subjected to different
mutational pressures depending on their location on the differently replicating
DNA strands, which affects their codon usage and amino acid composition of
coded proteins [33,34,35,36].

Although several simulation studies about the optimization of the genetic code
were carried out [14,15,16,17,18], none of them considered the real and global
genomic aspect of this optimization, i.e. the real mutational pressure, gene con-
tent, codon and amino acid usage. Zhu et al. [37] found that the universal genetic
code appears to be less optimised for error minimization when specific codon
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usage for particular species was considered. However, the authors applied the
same and simple mutation pattern for all species in this analysis, which do not
fit to the specific codon usage and they concluded that the specific mutation pat-
tern should be taken into account. In this paper we considered the optimization
of the genetic code in the context of the two different mutational pressures spe-
cific for the leading and lagging DNA strands acting on the asymmetric genome
of Borrelia burgdorferi. This genome shows the strongest asymmetry between
the leading and lagging strands detected so far [33,34,38] thus, it is suitable for
such studies.

2 Materials and Methods

All our analyses were performed on the B. burgdorferi genome [39] whose se-
quence and annotations were downloaded from GenBank [40]. Based on these
data we calculated the content of codons, amino acids and codon usage for 564
leading strand genes and 286 lagging strand genes. The mutational pressure
characteristic for this genome was found by Kowalczuk et al. [41]. The pressure
was described by the nucleotide substitution matrices (Mn) as follows:

Mn =

⎡
⎢⎢⎣

1 − pRA pRAC pRAG pRAT

pRCA 1 − pRC pRCG pRCT

pRGA pRGC 1 − pRG pRGT

pRTA pRTC pRTG 1 − pRT

⎤
⎥⎥⎦

where: p is the overall mutation rate; Rij for i, j = A, C, G, T and i �= j is the
relative rate of substitution of the nucleotide i by the nucleotide j; Ri (in the
diagonal) for i = A, C, G, T represents the relative substitution rate of nucleotide
i by any of the other three nucleotides.

Ri =
∑
i�=j

Rij

and RA +RC +RG +RT = 1. For p = 1 the matrix describing the leading strand
mutational pressure is:

M leading
n =

⎡
⎢⎢⎣

0.808 0.023 0.067 0.103
0.070 0.621 0.047 0.261
0.164 0.015 0.706 0.116
0.065 0.035 0.035 0.865

⎤
⎥⎥⎦

The matrix represents the most probable pure mutational pressure associated
with replication acting on the leading strand. Because DNA strands are comple-
mentary, the mutational pressure acting on the lagging strand is a kind of the
mirror reflection of the pressure exerted on the leading strand, e.g. RGA for the
leading strand corresponds to RCT for the lagging strand etc. In our analyses
we have assumed p = 10−8 which approximately corresponds to the observed
number of substitutions in a bacterial genome per nucleotide per generation [42].
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The codon substitution matrix (Mc) containing relative rate of substitutions of
one codon by another one was derived from the nucleotide substitution matrix
(Mn). The Mc is the Kronecker product of three Mn matrices: Mc = Mn ⊗
Mn ⊗ Mn. For example, the substitution rate of codon GCA to codon CTA
equals Rc

GCA→CTA = p2RGCRCT (1 − pRA). In the Mc each row contains the
substitution rates for one of 64 codons to another one:

Mc =

⎡
⎢⎢⎢⎢⎢⎣

Rc
AAA→AAA Rc

AAA→AAC Rc
AAA→AAG ... Rc

AAA→TTT

Rc
AAC→AAA Rc

AAC→AAC Rc
AAC→AAG ... Rc

AAC→TTT

Rc
AAT→AAA Rc

AAT→AAC Rc
AAT→AAG ... Rc

AAT→TTT
...

...
...

. . .
...

Rc
TTT→AAA Rc

TTT→AAC Rc
TTT→AAG ... Rc

TTT→TTT

⎤
⎥⎥⎥⎥⎥⎦

where: Rc
n→m for indices of codons n, m ∈ {1..64} represents the relative rate of

substitution of codon n by codon m.
Each row of Mc was multiplied by the codon usage of a given codon Un (i.e.

relative frequency of a codon among other synonymous codons coding the same
amino acid or stop codon) giving the Mu matrix:

Mu =

⎡
⎢⎢⎢⎢⎢⎣

UAAARc
AAA→AAA UAAARc

AAA→AAC ... UAAARc
AAA→TTT

UAACRc
AAC→AAA UAACRc

AAC→AAC ... UAACRc
AAC→TTT

UAAT Rc
AAT→AAA UAAT Rc

AAT→AAC ... UAAT Rc
AAT→TTT

...
...

. . .
...

UTTT Rc
TTT→AAA UTTT Rc

TTT→AAC ... UTTT Rc
TTT→TTT

⎤
⎥⎥⎥⎥⎥⎦

where: Un stands for codon usage of codon n, where n ∈ {1..64}.
To obtain the amino acid substitution matrix (Ma) containing relative rates

of substitutions of one amino acid or stop by another, the respective elements of
Mu matrix were summed up, which gives the matrix of amino acids (and stops)
substitution:

Ma =

⎡
⎢⎢⎢⎢⎢⎣

Ra
Ala→Ala Ra

Ala→Arg Ra
Ala→Asn ... Ra

Ala→V al

Ra
Arg→Ala Ra

Arg→Arg Ra
Arg→Asn ... Ra

Arg→V al

Ra
Asn→Ala Ra

Asn→Arg Ra
Asn→Asn ... Ra

Asn→V al
...

...
...

. . .
...

Ra
V al→Ala Ra

V al→Arg Ra
V al→Asn ... Ra

V al→V al

⎤
⎥⎥⎥⎥⎥⎦

where: Ra
p→q for p, q ∈ {1..21} represents the relative rate of substitution of

amino acid (or stop) p by amino acid q.
The sum of each row of Ma gives the rate of substitution of amino acid p (or

stop) p to another:
Ra

p =
∑
q �=p

Ra
p→q.

Such calculations were carried out for the leading strand data and for the lagging
strand data separately.
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3 Results and Discussion

In order to estimate how the genetic code and the mutational pressures are opti-
mized for differently replicating strands, we considered the number of substituted
amino acids (and stops). Therefore we multiplied each rate of substitution of a
given amino acid Ra

p by the number Ap of this amino acid in the coded proteins
and summed the products:

SA =
21∑

p=1

(ApR
a
p).

In our consideration we applied the number of substituted amino acids in-
stead of fraction because we wanted to analyse the genetic code optimization in
the context of the whole genome including the bias between the numbers of the
leading and lagging strand genes. For constant Ra

p and Ap, SA reaches the mini-
mum if Ap < Ap+1 < Ap+N and simultaneously if Ra

p > Ra
p+1 > Ra

p+N i.e. when
Ap and SA are negatively correlated. In other words the total cost of mutations
is lower if the rate of mutation is higher for the less frequent residues than for
the more frequent ones. Interestingly, Ap and SA calculated for the real genome
data show statistically significant negative correlation (Fig. 1) that suggests a
tendency to minimization of amino acid substitutions in the real genome.
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Fig. 1. Correlation between substitution rates Ra
p and the number of amino acids Ap

for the leading strand (A) and for the lagging strand (B) data

However, it is possible to find such ascription of amino acids to codons (i.e.
to elaborate a new genetic code) which is better optimized than the universal
code - according to the minimization of the number of amino acid substitutions.
The best way is to rank reversely Ra

p versus Ap. Similarly, one can obtain the
worst code giving the highest number of amino acid substitutions by the ranking
of Ap and SA accordingly. The results of such transformations made separately
for the leading and for the lagging strand cases are shown in Table 1. Such a
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transformation did not change the global structure of the genetic code, retains
the same degeneracy level and redundancy of the canonical genetic code. It
assumes that the groups of codons which code for a single amino acid are fixed
and we changed only the assignments between amino acids and the codon blocks.
For example, in the case of the leading strand, tryptophane is now coded by four
proline codons and proline by one methionine codon. The ascriptions of some
amino acids were changed but some of them retained their positions. Because
stop codons have special meanings and are represented by only one per gene, we
did not change the position of the stops in this transformation.

Table 1. The ascription of codons of a given amino acid that minimizes the number
of substitutions separately for the leading and lagging strand cases. Amino acids that
have not changed their position are in bold.

amino acid A R N D C Q E G H I L K M F P S T W Y V
leading strand G R N S W A K T Q I F L H Y M V E P D C
lagging strand H A L R G D T S M I N K C F E Y Q W V P

Table 2 shows the expected number of substituted amino acids (including
stops) SA - calculated for the universal genetic code, for the best one and for
the worst one for the giving DNA strand. It is possible to find the optimal code
for protein coding sequences located on one DNA strand but such a code is
not simultaneously the optimal one for genes located on the other DNA strand.
In fact it is worse than the universal one. Nevertheless, the SA values for the
universal code and the both classes of genes are much closer to the best code
than to the worst one. The value of SA for the universal code fall between the
values for optimal codes for DNA strands.

Table 2. The expected number of missense mutations (including stops) SA calculated
for the universal genetic code, for the best one and for the worst one for the leading
and lagging strand proteins

Code optimal for: The worst code
DNA strand Universal code leading strand lagging strand for the giving strand

leading 0.000955 0.000921 0.000974 0.001168
lagging 0.000482 0.000488 0.000465 0.000645

As it was shown above it is easy to find the optimal code for each strand
separately but it is difficult to calculate the code that would be optimal for the
two strands simultaneously. To solve the problem we have generated 20 million
random genetic codes replacing one amino acid by another one as described
previously, i.e. retaining the global structure of the genetic code retaining the
same degeneracy level and redundancy. Such a transformation corresponds to the
method widely used in other studies [14,15,16,17]. For each generated code we
calculated the number of substituted amino acids (excluding stops) SA separately
for genes located on the leading and lagging strands. Next we counted for these
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two sets of genes how many codes produce the SA value smaller than the value
for the universal code and we counted how many random codes are better for
both sets. In the last case we considered two conditions:

1. total number of substitutions (i.e. the sum of the SA for the leading and for
the lagging strand) produced by a generated code is smaller than under the
universal code;

2. generated code is better simultaneously for each of the two strands.

The first condition treats the leading and the lagging strand genes as one set
whereas the second one treats them as separate, independent sets. The results are

Table 3. The number of random (generated) codes (among 20 million) which are better
than the universal one according to the number of amino acid substitutions analysed in
the aspect of the differently replicating strands. Srandom

A leading - the number of substituted
amino acids in the leading strand proteins considering the random code; Srandom

A lagging -
the number of substituted amino acids in the lagging strand proteins considering the
random code; Suniversal

A leading - the number of substituted amino acids in the leading strand
proteins considering the universal code; Suniversal

A lagging - the number of substituted amino
acids in the lagging strand proteins considering the universal code.

Checked condition The number of better codes
Srandom

A leading < Suniversal
A leading 6652

Srandom
A lagging < Suniversal

A lagging 733
Srandom

A leading + Srandom
A lagging < Suniversal

A leading + Suniversal
A lagging 160

Srandom
A leading < Suniversal

A leading and Srandom
A lagging < Suniversal

A lagging 23
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presented in Table 3. We have found that the probability of random generation of
a code which would transmit fewer missense mutations in the set of genes located
on the leading strand or the lagging strand is relatively high. Nevertheless, we
have found much fewer codes which fulfil the first condition (160, i.e. 0.0008%)
(Fig. 2) and even fewer, which fulfil the second condition (23, i.e. 0.000115%).
The observed optimality of the code is very close to the results obtained by
Freeland and Hurst [16], i.e. one per million.

4 Conclusions and Perspectives

The results indicate that the existing universal code, the mutational pressure,
the codon and amino acid composition are highly optimised in the context of the
two differently replicating DNA strands minimizing the number of substituted
amino acids in the coded proteins. In our studies we assumed quite simple mea-
sure of a code’s susceptibility to errors - number of substituted amino acids -
ignoring the differences in their physicochemical properties, e.g. hydrophobicity,
polarity or isoelectric point. This simplification enabled to calculate analytically
the optimal and the worst assignments of amino acids to codons and to compare
them with the result obtained for universal genetic code considering mutational
pressure, codon usage and amino acid composition specific for genes lying on
differently replicating strands. However, considering of these physicochemical
properties would probably decrease the number of random codes better than
the universal one and could be further investigated. It would be also interesting
to analyze genomic systems of other organisms in this aspect. A better code for
one organism could be worse for another organism. If one wanted to look for
the optimal code for all organisms, one should check each organism separately -
its mutational pressure, amino acid composition and codon usage. It makes no
sense to look for a genetic code that would be better for average codon usage or
average mutational pressure. There are no average organisms in the biosphere.
In the early stages of genetic code evolution the code optimised itself to mini-
mizing harmful effects of various mutational pressures but after it was ,,frozen”
the mutational pressure begun to tune to the universal code independently in
different phylogenetic lineages.
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