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Abstract

One of the most popular criteria for model selection is the Bayesian Information Criterion (BIC). It is based on an asymptotic
approximation using Bayes rule when the sample size tends to infinity and the dimension of the model is fixed. Although it works
well in classical applications, it performs less satisfactorily for high dimensional problems, i.e. when the number of regressors is very
large compared to the sample size. For this reason, an alternative version of the BIC has been proposed for the problem of mapping
quantitative trait loci (QTLs) considered in genetics. One approach is to locate QTLs by using model selection in the context of
a regression model with an extremely large number of potential regressors. Since the assumption of normally distributed errors is
often unrealistic in such settings, we extend the idea underlying the modified BIC to the context of robust regression.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Although the Bayesian Information Criterion (BIC) is a very popular criterion for model selection, its behavior is
less satisfactory in high dimensional regression models. This is maybe not unexpected, since the BIC proposed by
Schwarz (1978) is based on an asymptotic approximation using the Bayes rule to derive posterior probabilities for all
the competing submodels of a regression model. The BIC cannot be expected to provide a good approximation in cases
where the number of potential regressors is large compared to n. Such problems are common in the context of mapping
quantitative traits (quantitative trait locus (QTL) mapping) in genetics, where the number of potential regressors is often
much larger than the number of observations. In such a setting it has been observed, for instance by Broman (1997)
and Broman and Speed (2002), that the classical BIC has a strong tendency to overestimate model size. To understand
this phenomenon, notice that the arguments regarding the asymptotics, which lead to the BIC, imply that the prior is
negligible and as a consequence all models are taken to be equally probable by the BIC. However, if the number of
regressors is very large, then there are many more high dimensional models than low dimensional ones (when there

are p∗ potential regressors there are actually
(

p∗
k

)
submodels of dimension k). As a consequence, it is likely that some

of these higher dimensional models lead to a low value of the BIC just by chance.
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For these reasons, a modified version of the BIC, the mBIC, has been proposed by Bogdan et al. (2004) and Baierl
et al. (2006) in the context of QTL mapping. The method is based on supplementing the BIC with a correction based
on a more realistic prior distribution over the set of possible models and leading to a higher penalty for larger models.

The mBIC is based on standard L2 regression, assuming that the conditional distribution of the trait given the
marker genotypes is normal. In practice this assumption is rarely satisfied. While the Central Limit Theorem shows
that moderate deviations from normality have little influence on the mBIC, the properties of this criterion deteriorate
drastically when the distribution of the trait has a heavy tail or the data include a certain proportion of outliers. Thus
we consider an alternative approach based on robust regression techniques and construct robust versions of the mBIC.
For this purpose, we use several well-known contrast functions and investigate the resulting versions of the mBIC both
analytically and using computer simulations. It turns out that the robust versions of the mBIC perform consistently
well for all the distributions analyzed and much better than the standard version of the mBIC in situations when the
distribution of the trait is heavy tailed. A possible exception to this rule is Huber’s contrast function with a very small
k, which we considered as a close approximation to L1 regression. The corresponding procedure was outperformed by
the other considered procedures under several models describing the error.

While the basic idea of including a prior that penalizes high dimensional models more heavily should be of interest
in a more general context, the modification of the BIC must be adapted to the structure of the model. Thus our
investigations are carried out in an ANOVA setting with one-way interactions, as encountered in the context of QTL
mapping. Consequently, our regressors are taken to be the dummy variables which describe the genotypes of the
markers, as well as products of pairs of these dummy variables.

The contents of this paper are as follows. In Section 2, we discuss potential applications of our approach in genetics.
Section 3 contains a detailed discussion of the underlying statistical model and mBIC. Section 4 introduces robust
methods of model selection and the associated versions of the mBIC. Results from simulations and analysis of real
data are included in Sections 5 and 6, respectively. Section 7 contains some concluding remarks.

2. Genetic background

A QTL is a genome position hosting genes that influence a quantitative trait of interest (e.g. height, yield). Locating
QTLs is one of the major tasks of quantitative genetics. Apart from broadening general biological knowledge, QTL
mapping is often used to detect genes influencing economically important traits in domesticated animals and crops (see
e.g. Chardon et al., 2004; Khatkar et al., 2004; Walling et al., 2000). In humans, QTL mapping is applied to locate genes
responsible for the development of certain medical conditions (see e.g. Dick and Foroud, 2002, as well as examples
and references in Lynch and Walsh, 1998).

In order to locate QTLs, geneticists use molecular markers. These are pieces of DNA that exhibit variation between
individuals. Their characteristics (i.e. genotypes) can be determined experimentally. In organisms where chromosomes
occur in pairs (i.e. diploid organisms), the genotype at a particular locus is specified by two pieces of DNA that
are potentially different. From a statistical point of view, marker genotypes can be treated as qualitative explanatory
variables. If a QTL is located close to a given marker, we expect to see an association between the genotype of the
marker and the value of the trait.

Locating QTLs in natural, outbred, populations is relatively difficult. This is due to the fact that as a result of crossover
events, which occur every time gametes are produced, the association between a QTL and a neighboring marker may
be very weak. Therefore, to control the number of crossovers, scientists usually use data from families with more than
one offspring or extended pedigrees (see e.g. Lynch and Walsh, 1998; Thompson, 2000). Locating QTLs is easier and
usually more precise when the data come from experimental populations. Such populations consist of inbred lines of
individuals, who are homozygous at every locus on the genome (i.e. have identical pairs of chromosomes). By crossing
individuals from such inbred lines, scientists can control the number of meioses (the process in which gametes are
produced) and produce large experimental populations for which the correlation structure between the genotypes at
different markers is easy to predict. Inbred lines have been created in many species of plant, as well as animal species
(e.g. mice). Results from research on experimental populations can often be used to predict biological phenomena in
an outbred population, due to the similarity of genomes in the two populations (see e.g. Philips, 2002).

A summary of standard methods of QTL mapping used in experimental populations can be found, for example, in
Lynch and Walsh (1998), Doerge et al. (1997) or Doerge (2002). This article is devoted to detecting QTLs in backcross
populations. According to such a design, two inbred lines are crossed to produce offspring, who are crossed with one of
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the parental lines. The resulting offspring exhibits one of only two possible genotypes at any particular locus: either an
individual is homozygous for the allele (version of the gene) from the parental line used at the second level of crossing,
or heterozygous (has alleles from both parental lines).

One of the methods of locating QTLs relies on choosing markers closely linked to a QTL by fitting a multiple
regression model relating the values of the trait values to the genotypes of the marker. The most difficult part of this
process is to estimate the number of QTLs. For this purpose, one could use one of many model selection criteria, such
as Akaike’s Information Criterion (Akaike, 1974) or the Bayesian Information Criterion (BIC) proposed by Schwarz
(1978). These criteria have been used or discussed in the context of QTL mapping e.g. by Broman (1997), Piepho
and Gauch (2001), Ball (2001), Broman and Speed (2002), Bogdan et al. (2004), Siegmund (2004) and Baierl et al.
(2006). In particular Broman (1997) and Broman and Speed (2002) observed that the usually conservative BIC has
a strong tendency to overestimate the number of QTLs. Bogdan et al. (2004) explain this phenomenon by observing
that a serious problem related to multiple testing arises from the use of a large number of markers, as is normally the
case in typical genome searches. This requires a modification of the standard criteria for model selection. The problem
of overestimation is exacerbated when one also looks for epistatic QTLs, which influence the trait only by interacting
with other genes. The modification (mBIC) of the BIC proposed by Bogdan et al. (2004) uses an additional penalty for
larger models taking prior knowledge on the number of QTLs into account. In the case where no prior knowledge on
the number of QTLs is available, the penalty is calibrated so that the overall probability of a type I error is controlled at
a level close to 0.05 for typically used sample sizes (n > 200). Bogdan et al. (2004) and Baierl et al. (2006) report the
results of an extensive range of simulations demonstrating the properties of the mBIC under a wide range of possible
genetic models.

Finally, we wish to mention that linear models have also been used to explore gene regulatory networks (see for
instance Bussemaker et al., (2001) Keles et al., (2004)). From a statistical point of view, this may be viewed as a problem
of selection from a massive range of models which also involve interactions. Thus our ideas might also be of interest
in this setting.

3. The statistical model

We start by briefly reviewing the multiple regression model considered. It is an ANOVA model with one-way
interactions and can be used for QTL mapping within the context of the backcross design. Let Xij denote the genotype
of the ith individual at the j th marker. We set Xij = − 1

2 , if the ith individual is homozygous at the j th marker and
Xij = 1

2 , if it is heterozygous. We fit a multiple regression model of the form

Yi = � +
∑
j∈I

�jXij +
∑

(u,v)∈U

�uvXiuXiv + �i , (1)

where I is a subset of the set N = {1, . . . , nm}, nm denotes the number of markers available, U is a subset of N × N

and �i is a random error term. In order to identify markers which are close to a QTL, we need to select an appropriate
submodel. For this purpose, we allow the inclusion of interaction terms in the model, even when the corresponding
main effects are not included. This approach is justified by the recent discoveries of genes that do not have their own
additive effects, but only influence a trait by interacting with other genes (see e.g. Fijneman et al., 1996, 1998).

One of the most popular tools for choosing influential regressor variables is the BIC, which recommends choosing
the simplest model for which

n log RSS + k log n (2)

obtains its minimal value. Here RSS is the residual sum of squares from regression, k is the number of regressor
variables and n is the sample size (number of individuals considered). As mentioned above, the BIC has a tendency
to overestimate the number of QTLs. The modified version of the BIC, the mBIC, proposed by Bogdan et al. (2004),
exploits the Bayesian context of the BIC and supplements this criterion with additional terms taking into account a
realistic prior distribution on the number of QTLs. The resulting mBIC is based on minimizing the following quantity:

mBIC = n log RSS + (p + q) log n + 2p log(l − 1) + 2q log(u − 1),

where p is the number of main effects in the model and q is the number of epistatic terms. The coefficients of the
additional penalty terms, l := nm/ENm and u := ne/ENe, depend on the number of possible regressors nm and
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ne =nm(nm −1)/2 (corresponding to the number of main and interaction effects, respectively), as well as the expected
numbers ENv and ENe of main and interaction effects, where these expectations are chosen according to given prior
distributions.A prior can sometimes be obtained by looking at similar experiments that have been carried out previously.
In the absence of prior information, Bogdan et al. (2004) propose the use of ENm = ENe = 2.2. This choice guarantees
that the probability of a type I error under H0 using the appropriate procedure (i.e. detecting at least one QTL when
there are none) is smaller than 0.07 for sample sizes n�200 and a moderate number of markers (M > 30).

Bogdan et al. (2004) and Baierl et al. (2006) present the results of an extensive range of simulations, which confirm
the good properties of the standard and extended version of mBIC when applied to QTL mapping.

For normally distributed errors, �i , classical least squares regression is well justified, for instance, by the Gauss–Markov
Theorem. As a result of the Central Limit Theorem, if the sample is large enough, then the standard test procedures
for the significance of regression coefficients are resistant to moderate deviations from the assumption of normality. It
can be seen that this property is shared by the BIC and its modification for mapping QTLs, the mBIC. However, the
estimates and tests derived under the assumption of normality cannot be expected to work well in the cases of skewed
and heavy tailed distributions. In some situations, as in the case of the Cauchy distribution, the Central Limit Theorem
does not even hold. It is also well known that standard L2 regression is highly sensitive to outliers.

Methods of robust regression provide an alternative in such situations. They perform well under a wide range of
error distributions without losing too much power when normality holds. One approach to obtaining robust regression
estimates is to use M-estimates, i.e. to minimize another measure of distance instead of the residual sum of squares.
Another approach would be to use MM-estimates, which have the additional property of also being robust with respect
to leverage points (see Yohai, 1985). However, the model considered only contains dummy variables and, due to
appropriate randomization, the design is close to being balanced. Therefore, leverage points should not be expected.
We thus focus on M-estimates but mention here that our simulations gave nearly identical results for both M-estimates
and the corresponding MM-estimates.

M-estimates of the regression parameters are based on the minimization of
∑n

i=1�(ri), where the ri are the residuals
standardized using a robust scale estimator and �(x) is a contrast function. We consider the following popular contrast
functions:

�Huber(x) :=
{

k|x| − k2/2 for |x| > k,

x2/2 for |x|�k,
(3)

�Bisquare(x) :=

⎧⎪⎨
⎪⎩

k2/6 for |x| > k,

k2

6

[
1 −

(
1 −

(x

k

)2
)3
]

for |x|�k,
(4)

�Hampel(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a(b − a + c)/2 for |x| > c,

a(b − a + c)/2 − a(|x| − c)2

2(c − b)
for b < |x|�c,

a|x| − a2/2 for a < |x|�b,

x2/2 for |x|�a.

(5)

The calculation of regression coefficients based on these contrast functions requires an iterative method, such as
iteratively reweighted least squares. In our simulations we standardized residuals using the median absolute deviation
(MAD) from the median. For details on this and other aspects of robust regression (e.g. confidence regions and tests
for M-estimates), see Chapter 7 in Huber (1981). Applications of robust regression have been discussed, for instance,
in Carroll (1980).

Notice that for small k, Huber’s contrast function is very close to the objective function �(x) = |x| used in L1
regression. Among others, we will consider such a version of Huber’s M-estimate and expect it to provide some insight
concerning the performance of L1 regression. We refer to Bassett and Koenker (1978) for a more detailed discussion
of L1 regression.

In the next section of the paper we discuss the problem of model selection in the context of robust regression.
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4. Robust model selection and the modified BIC

A natural way to obtain a robust version of the BIC (or the mBIC) is to replace the residual sum of squares in the
criterion for model selection by a sum of contrasts. However, unlike in the L2 case, a sum of contrasts will usually not
be scale invariant. We therefore propose to standardize the Yi in a robust way and work with standardized observations,
Y

(s)
i , obtained by subtracting the median and dividing by the MAD as defined in Ronchetti et al. (1997). Notice that it

is necessary to use the same estimate of the MAD in all the models considered, in order to make comparisons between
models possible. We therefore propose to use the MAD calculated under the null model of no effect for the purposes of
model selection. For the purpose of estimating the parameters of the various regression models, we additionally rescale
the residuals separately for each model. In our simulations, we used the robust rescaling provided by the function ‘rlm’
in the library MASS of the R package, which is available under http://www.R-project.org.

This leads to the following robust version of the BIC (see (2)):

BIC∗
� := n log

n∑
i=1

�(Y
(s)
i − x′

i �̂) + k log(n). (6)

Here, x′
i denotes the vector of regressors in the model (see (1)) and �̂ contains the regression coefficients estimated

using �(·) as the contrast function.
An alternative approach proposed by Ronchetti et al. (1997) in the context of model selection is to rescale the contrast

function instead of standardizing the Yi’s. As before, the same rescaling factors have to be used in all models. Ronchetti
et al. (1997) propose estimation of the rescaling factors based on the largest possible model. This is not possible in our
setup, since the largest possible model usually contains many more variables than observations. We therefore modified
their approach and estimated rescaling constants under the null model. This way of rescaling the contrast function led
to results that were almost identical to those obtained after standardizing Y using the MAD from the null model.

It has been shown by Machado (1993) that the robust BIC (6) is still consistent under quite general conditions on
the error distribution. Martin (1980), as well as Ronchetti (1985), used similar ideas, in order to make the AIC robust.
However, consistency is a minimal requirement, since the actual performance of BIC∗

� will depend both on �(x) and
the error distribution. Indeed this dependence becomes apparent from results in Jurec̆ková and Sen (1996, p. 410), who
derived the limiting distribution of

n∑
i=1

(�(Y
(s)
i − x′

i �̂1) − �(Y
(s)
i − x′

i �̂2))

for a fixed null model M1 versus a higher dimensional model M2.
In order to obtain more reliable performance of the robust BIC for different contrast functions �(x) and error

distributions, it seems natural to renormalize BIC∗
� by taking the limiting distribution of

Dn = n
(

log
∑

�(Y
(s)
i − x′

i �̂1) − log
∑

�(Y
(s)
i − x′

i �̂2)
)

into account. Ideally, BIC(M2)−BIC(M1) should have the same asymptotic distribution for different � and error models.
For this purpose, we will derive the asymptotic distribution of Dn using results from Jurec̆ková and Sen (1996), as well
as the delta method. Since the asymptotic distribution of Dn depends not only on �, but also on the unknown error
distribution, the required normalization constant needs to be estimated.

We compare model M1 with parameter vector �1 of dimension p1 + q1 and model M2 with parameter vector �2 of
dimension p2 + q2. M1 is assumed to be a submodel of M2.

Theorem 1. Let � be a contrast function satisfying the regularity conditions specified in Chapter 5.5 of Jurec̆ková and
Sen (1996). Define Ỹ

(s)
i to be the observations standardized according to the population median and the population

MAD. Furthermore, define the score function �(x) = �′(x). Let � = ∫
�′(x)f (x) dx, 	2

� = ∫
�(x)2f (x) dx and


 = ∫
�(x)f (x) dx, where f (x) denotes the density function of the error distribution under the true regression model

based on the observations Ỹ
(s)
i . Moreover, let us define the constant ce = 2�
/	2

�.

http://www.R-project.org
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Then under model M1

ceDn
d→ �2

(p2+q2)−(p1+q1)
(7)

as the sample size n → ∞.

Proof. Let ln(�) =∑
�(Y

(s)
i − x′

i�), where � is the true parameter vector. Note that

1

n
ln(�) = 1

n

∑
�(Y

(s)
i − x′

i�)
p→ E[�(Ỹ

(s)
i − x′

i�)] = 
.

From the consistency of M-estimates (see e.g. Huber, 1981) and the uniform continuity of ln in a neighborhood of �,
it also holds that both

1

n
ln(�̂1)

p→ 
 and
1

n
ln(�̂2)

p→ 
, (8)

where �̂1 and �̂2 are the M-estimates under models M1 and M2, respectively. Approximating Dn by the first term of its
Taylor series expansion leads to

n(log ln(�̂1) − log ln(�̂2)) = n

(
log

(
1 + ln(�̂1) − ln(�̂2)

ln(�̂2)

))
(9)

= ln(�̂1) − ln(�̂2)

(1/n)ln(�̂2)
+ Rn, (10)

where

Rn = O

(
(ln(�̂1) − ln(�̂2))

2

(1/n)l2
n(�̂2)

)
.

Jurec̆ková and Sen (1996, pp. 408–416, note their discussion of the extension of their results to studentized observations)
proved that

2�

	2
�

(ln(�̂1) − ln(�̂2))
D→ �2

(p2+q2)−(p1+q1)
. (11)

Thus to conclude (7), it is enough to observe that from (8) and (11)

Rn
p→ 0

as n → ∞. �

For least squares regression, �(Y
(s)
i − x′

i�) is equal to the residual sum of squares. In this situation, asymptotically
Dn has a �2-distribution with (p2 + q2) − (p1 + q1) degrees of freedom (Serfling, 1980). Hence, the normalization
constant ce is equal to 1 in this case.

As can be seen from Theorem 1, specific normalization constants (ce) depend on the error distribution and the �-
function considered. If the error distribution is assumed to be known, ce can be derived analytically. The appropriate
values for chosen distributions is shown in Table 1. In practice, the error distribution and ce have to be estimated. For
this purpose, we first carry out model selection with ce equal to 1, i.e. the normalizing constant for Gaussian errors.
The empirical distribution of the resulting residuals is then used to approximate the expected values, defining �, 	2

� and

 by the corresponding averages (see e.g. p. 409 of Jurec̆ková and Sen, 1996). Plugging in these quantities leads to the
estimate ĉe.

The discussion above leads us finally to the following robust version of the mBIC:

mBIC = ĉen log
∑

�(Y
(s)
i − x′

i �̂) + (p + q) log n + 2p log(l − 1) + 2q log(u − 1), (12)

where � is a given contrast function and �̂ is the corresponding M-estimate of the (p+q)-dimensional parameter vector
of the model considered.
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Table 1
Values for normalization constants

Error distr. Huberk=0.05 Huberk=1.345 Bisquare Hampel

Normal 1.267 1.079 1.095 1.025
Laplace 1.967 1.397 1.387 1.254
Cauchy a a 2.242 2.428
Tukey 1.770 1.952 1.408 1.653
�2 1.199 1.153 1.164 1.125
�2

med 1.295 1.255 1.248 1.165

The definitions of the error distributions are given in Section 4.2.
aIn the case of the Cauchy distribution, the integral for �Huber leading to 
 is infinite.

5. Comparison of performance under different error models

5.1. Design of the simulations

Simulations are carried out to compare the performance of least squares regression and robust methods for QTL
mapping under a variety of error distributions. We consider M-estimates for robust models based on the following
contrast functions: �Huber, �Bisquare and �Hampel. The parameters in the �-functions are set to a = 2, b = 4 and c = 8
for Hampel’s function, k = 1.345 for Huber’s function, and c = 4.685 for Tukey’s bisquare M-estimator. These are
the default parameter values used in the R-package MASS, which was used to obtain robust regression estimates. We
also chose k = 0.05 for Huber’s M-estimator as a close, smooth approximation to the L1 contrast function �(x) = |x|.
Notice that due to the smoothness of �Huber, Theorem 1 still applies.

The model selection process was carried out using the standard version of the mBIC (12) with l = nm/2.2 and
u = ne/2.2. To solve the problem of searching over a large class of possible models, we use forward selection.

Three arrangements of marker genotypes with a backcross population of 200 individuals were simulated.
Arrangement 1: One chromosome of length 100 cM with five equally spaced markers.
Arrangement 2: Two chromosomes of length 100 cM both with 11 equally spaced markers.
Arrangement 3: Five chromosomes of length 100 cM each with 11 equally spaced markers.
Two scenarios were considered for each arrangement: a null model with no effects and a “3 QTL” model with one

main effect of size � = 0.55 and one interaction effect (involving two loci) of size � = 1.2. We assumed all the QTLs
to be located at marker positions.

All the methods were applied to each of the arrangements under each of six different error distributions. 1000
replications were used for Arrangements 1 and 2, whereas we carried out 500 simulations for Arrangement 3, which is
computationally quite demanding. The performance of each method was measured by the average number of correctly
identified main and epistasis effects, as well as the false discovery rate defined as

FDR = 1

n

n∑
i=1

fp.mi + fp.ei

fp.mi + fp.ei + c.mi + c.ei

,

where the quantities fp.mi and fp.ei denote the number of false positive main and epistasis effects that were detected in
replication i, and c.mi and c.ei are the number of correctly identified main and epistasis effects, respectively. According
to the definition of the FDR (see Benjamini and Hochberg, 1995), the terms in the sum corresponding to replicates with
no detections are set to be equal to zero. Under the null model, the false discovery rate is equivalent to the multiple
type I (or familywise) error of detecting at least one incorrect effect.

An inferred main effect was classified as being a false positive, if it was more than 15 cM away from the true QTL
or the QTL had already been detected. An epistatic effect was classified as being a false positive, if at least one of the
two QTLs involved was more than 15 cM from the true QTL. Notice that this definition is fairly strict, since effects
that are not very strong often lead to the detection of markers that are further than 15 cM away from the true QTLs (see
Bogdan and Doerge, 2005, for a discussion).
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Table 2
Multiple type I errors for Arrangement 1

Estimate Error distributions

Normal Laplace Cauchy Tukey Chisq Chisq-med

Huberk=0.05 theor. 10.3 11.6 a 11.7 7.3 9.6
Huberk=0.05 est. 10.2 12.0 9.7 10.3 7.6 10.5
Huberk=1.34 theor. 11.1 10.1 a 15.5 10.7 13.0
Huberk=1.34 est. 12.8 12.1 10.6 10.9 10.6 11.9
Bisquare theor. 11.1 10.6 12.0 13.6 10.5 12.3
Bisquare est. 12.2 12.2 11.4 12.0 10.4 10.6
Hampel theor. 10.8 11.1 12.4 14.6 12.3 12.8
Hampel est. 11.9 11.3 9.5 12.0 11.0 12.3
LmBIC

2 12.9 10.6 4.6 7.3 11.1 12.3
LBIC

2 26.4 22.1 14.9 18.9 23.5 24.0

aComparison of the probability of type I errors under the null model when the distribution of residuals is assumed to be known (theor., ce) or has
to be estimated (est., ĉe). For L2 regression, ce is always equal to 1. Definitions of the error distributions are given in Section 4.2.

5.2. Error distributions

We considered the following error distributions, which were all centered around the origin and standardized such
that the inter-quartile range (IQR = Q75 − Q25) was 1.5.

(1) Normal: 1.11 × N(0, 	2) with 	 = 1.
(2) Laplace (double exponential): 1.08 × (1/2�) exp(−|�t |) with � = 1.
(3) Cauchy (scale = 0.75) with scale = 0.5 × IQR.
(4) Tukey’s gross error model: 1.081 × (�N(0, 	2) + (1 − �)N(0, 
	2)) with � ∼ Bernoulli (p = 0.95), 	 = 1 and


 = 100.
(5) �2 centered around the mean with 6 d.f.: 0.342 × (�2

6 − 6).
(6) �2 centered around the median with 6 d.f.: 0.342 × (�2

6 − x̃6) with x̃6 = 5.348.

5.3. Results of the simulations and discussion

We focus on two points in particular. The first issue is to investigate whether our approach of using estimated
normalization constants leads to similar values for the multiple type I error and the false discovery rate under various
models for the error. We call this property error-robustness. The second issue is whether the power of our procedure
for model selection remains high under non-normal errors and when outliers are present. We call this property power-
robustness.

We start by investigating the error-robustness. The probability of type I errors under the rules considered for selecting
a model can be found in Tables 2–4. The two rows associated with each of the procedures present the results in the cases
when the proper theoretical constant was used and when the constant was estimated (separately for each replicate),
respectively. These tables show that the multiple type I errors using the mBIC and estimated normalizing constants
are comparable for all of the procedures. As expected from the formulae given in Bogdan et al. (2004), the probability
of multiple type I errors for Arrangement 1 (only five markers) are approximately 0.1 and lower for Arrangements 2
and 3. For most of the examples there is only a slight difference between the results obtained using theoretical and
estimated constants. The slightly larger difference obtained for the procedure using the Huber contrast under both the
Laplace and heavy-tailed distributions results from the problem of estimating the density of the Laplace distribution
close to 0 (the Huber contrast with k = 0.05 assigns a relatively large weight to the corresponding residuals) and the
tails of the Tukey distribution (the Huber contrast function tends to infinity as x → ±∞). Also, note that the multiple
type I error of the procedure for model selection based on the original BIC is much larger than desired and rapidly
increases as the number of regressors becomes larger. This demonstrates the advantage of using the mBIC rather than
the BIC.
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Table 3
Multiple type I errors for Arrangement 2

Estimate Error distributions

Normal Laplace Cauchy Tukey Chisq Chisq-med

Huberk=0.05 theor. 3.4 6.8 a 3.5 2.2 4.3
Huberk=0.05 est. 4.2 5.3 6.2 4.6 5.6 5.6
Huberk=1.34 theor. 4.4 5.1 a 7.2 4.7 7.1
Huberk=1.34 est. 3.6 5.5 4.5 5.8 6.0 6.1
Bisquare theor. 4.1 4.1 4.6 4.8 4.5 6.7
Bisquare est. 3.4 5.0 5.4 5.2 5.4 5.8
Hampel theor. 4.2 5.6 5.9 6.3 5.1 6.5
Hampel est. 4.2 4.6 4.7 5.0 6.5 6.7
LmBIC

2 4.4 4.6 8.8 3.4 6.1 5.7

LBIC
2 90.4 89.8 81.6 86.9 88.4 88.6

aComparison of the probability of type I errors under the null model when the distribution of residuals is assumed to be known (theor., ce) or has
to be estimated (est., ĉe). For L2 regression, ce is always equal to 1. Definitions of the error distributions are given in Section 4.2.

Table 4
Multiple type I errors for Arrangement 3

Estimate Error distributions

Normal Laplace Cauchy Tukey Chisq Chisq-med

Huberk=0.05 theor. 2.6 5.6 a 3.8 1.4 2.6
Huberk=0.05 est. 5.6 6.8 6.2 3.4 6.4 6.0
Huberk=1.34 theor. 6.4 5.2 a 9.7 2.0 6.6
Huberk=1.34 est. 6.0 5.1 4.6 4.3 4.0 5.0
Bisquare theor. 3.8 4.4 3.6 4.0 3.4 5.0
Bisquare est. 4.8 2.6 3.8 4.6 5.0 5.0
Hampel theor. 5.0 7.2 5.6 7.2 4.4 6.2
Hampel est. 6.4 5.7 4.8 4.8 5.2 6.2
LmBIC

2 5.5 2.0 6.5 3.0 3.5 3.5

LBIC
2 100 100 99.0 100 100 100

aComparison of the probability of type I errors under the null model when the distribution of residuals is assumed to be known (theor., ce) or has
to be estimated (est., ĉe). For L2 regression, ce is always equal to 1. Definitions of the error distributions are given in Section 4.2.

The false discovery rates under the “3 QTL” model can be found in Figs. 1–3. They provide a similar picture, showing
that our estimated normalizing constants lead to similar false discovery rates for several models for the error term.
Indeed, the false discovery rates when applying the mBIC are approximately 15% for Arrangement 1 and 10% for
Arrangements 2 and 3 (recall that a proportion of these “false” positives are due to the problem of localizing a QTL
accurately). Least squares regression, in combination with standard BIC, results in false discovery rates above 20% for
Arrangement 1, around 60% for Arrangement 2 and close to 100% for Arrangement 3, which again demonstrates the
necessity of modifying the original BIC.

Figs. 1–3 also provide information regarding the power-robustness. They present the average detection power (av-
eraged over additive and interaction effects) and the estimated false discovery rate for the analyzed procedures under
different error distributions. In the case of normal errors, model selection based on least squares regression and M-
estimation performs comparably for all three arrangements. The only robust regression method which is significantly
worse than L2 regression under normal errors is the one based on the Huber contrast with k = 0.05. This confirms the
low efficiency of L1 regression under normality. The Huber contrast function with k=0.05 also performed significantly
worse than the other robust methods in the case of the Tukey and �2 error distributions. Our simulations demonstrate
that standard L2 regression performs relatively well under the Laplace and �2 distributions, while it is inferior to some
of the robust methods. The largest difference between L2 regression and robust methods is observed for the heavy-tailed
Cauchy distribution (for which L2 regression fails completely) and the Tukey distribution, according to which an outlier
occurs with some given probability. Tukey’s bisquare estimate performed well in all the problems considered.
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Fig. 1. Percentage of correctly identified main and epistatic effects (shaded bars) and false discovery rates (horizontal black lines) for Arrangement
1. Definitions of the error distributions are given in Section 4.2.
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Fig. 2. Percentage of correctly identified main and epistatic effects (shaded bars) and false discovery rates (horizontal black lines) for Arrangement
2. Definitions of the error distributions are given in Section 4.2.

6. Application to real data

We apply our method to a data set obtained from QTL experiments on mice. Mähler et al. (2002) analyzed the
susceptibility to colitis in strains that carry a deficient IL-10 gene, which is important in controlling the response of
the immune system to intestinal antigenes. We consider their data obtained from a backcross to the less susceptible B6
strain and the quantitative traits MidPC1 and CecumPC1, which are the first two principal components of four scores
measuring the severity and type of lesions in middle colon and cecum, respectively.

The data set contains 203 individuals and 12 markers from nine chromosomes, which were selected from a preliminary
genome scan of 40 individuals and 67 markers spread over all 20 chromosomes.

Mähler et al. (2002) found one significant main effect for the MidPC1 trait on chromosome 12, which explains 6.7%
of the variance and one possible main effect for CecumPC1 on chromosome 13, which explains 3.4% of the variance,
but no epistatic effects. The distributions of the residuals under the selected model clearly deviated from normality by
being bimodal in the case of both traits.

The modified BIC based on both least squares and M-estimation confirmed the main effect for ModPC1. In addition,
both methods found an epistatic effect between the marker on chromosome 4 at 71 cM and the marker on chromosome 7
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Fig. 3. Percentage of correctly identified main and epistatic effects (shaded bars) and false discovery rates (horizontal black lines) for Arrangement
3. Definitions of the error distributions are given in Section 4.2.

at 46 cM. In the case of CecumPC1, model selection using least squares regression found no QTL. Using M-estimation
with a bi-square, Huber or Hampel contrast function, we detected two QTL, one on each of chromosome 5 and
chromosome 13. The effect on chromosome 5 is slightly stronger and has a different sign to the effect on chromosome
13, as suggested by Mähler et al. (2002).

This example illustrates that our robust methods of model selection are capable of finding additional effects when
the distribution of errors is not normal.

7. Conclusions

Overall, the performance of the M-estimators considered is superior to least squares regression in the context of
QTL-mapping under various conditions. Considering the wide spectrum of possible error distributions, M-estimates
based on the contrast functions considered also prove to be more flexible than L1 regression. Among the robust methods
considered, Tukey’s bisquare estimate showed particularly good overall performance.
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