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Monte Carlo simulation of genome viability
with paralog replacement

Stanistaw CEBRAT, Dietrich STAUFFER'
Department of Genetics, Institute of Microbiology, University of Wroctaw, Wroctaw, Poland

Abstract. Recent analyses of genome content have revealed that many single func-
tions, even in haploid organisms, can be executed by more than one gene. As a result,
experimental disruption of many individual genes does not exert lethal effects on
the organism or even any visible change in the phenotype of the organism with
a knockedout gene. Our analysis shows that such genetic redundancy allows for an ap-
preciably higher mutation load in the genome simulations before the viability of
the whole organism is destroyed.

Key words: DNA, genome, Monte Carlo simulations, mutation, paralog.

Introduction

The latest progress in whole genome sequencing has revealed redundancy in ge-
netic information. In many genomes, the number of genes which can be knocked
out without any visible phenotypic effect is substantial. In the unicellular
eukaryote Saccharomyces cerevisiae there are about 5350 protein coding genes
(MACKIEWICZ et al. 1999, 2002), of which only 924 are essential and probably
unique, since their elimination from the genome has a lethal effect, while for about
half of the other genes no changes in phenotype after gene disruption have been
found (MIPS 2002 DATABASE).

Comparative intra- and intergenomic studies of different coding sequences
have shown that many sequences present in the same genome are homologous.
These sequences, if occurring in the same genome, are called paralogs. Paralogs
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can perform the same function, complementing each other, or they can fulfil dif-
ferent functions. Furthermore, a single function can be executed by genes which
are not paralogs. SLONIMSKI et al. (1998) found a specific distribution of paralogs
sharing homology. They noticed that the total number of paralogs belonging to
the groups with n paralogs in each group is twice as high as the number of paralogs
belonging to the groups with n+1 paralogs in each group. This observation seems
to be a universal law for all genomes sequenced thus far. In this paper we try to es-
timate how the observed redundancy enhances the viability of genomes under
the mutation pressure.

Monte Carlo simulations

Computer simulations using random numbers are called Monte Carlo simulations,
after the roulette tables of the Mediterranean casino. Physicists usually see
METROPOLIS et al. (1953) as the beginning, but Metropolis himself wrote
in METROPOLIS (1987) that Enrico Fermi already in the 1930’s simulated some
random walks without publishing them. We do not need here the more sophisti-
cated methods of importance sampling (LANDAU, BINDER 2000) for thermal
equilibrium. To perform a computer instruction with a probability p one calculates
a random number $7§ between zero and unity, and then follows this instruction
if and only if 7 < p. We produced such random numbers by multiplying an initial
odd integer again and again by the integer 16807, a simple and commonly used
method.

Results and discussion

It would be too simplistic to assume that all N genes in any genome are essential
for the survival of the organism and are stored in DNA as only one copy. Some
genes, like these determining the colour of the hair, are not crucial for survival,
and some genes are repeated in the genome, thus resulting in several genes exer-
cising one function. Let us thus assume that an organism has L functions essential
for survival; of the L essential functions, K are executed by single copy genes,
while the other L-K essential functions could be performed by multi-copy genes
stored in several regions of the genome. Some of them have evolved by duplica-
tion of a single copy gene, showing sequence homology, and are called paralogs.
In our calculations we have assumed that only such sequences can complement
a function and represent the information redundancy in the genomes.
If a “healthy” paralog is present it could function properly as a replacement for
the mutated gene. Presumably, not many functions are unimportant for simple or-
ganisms: N-L is at most of the order of L, and thus perhaps about one quarter of all
essential functions are performed by products of the single-copy genes: L = 4K.
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For diploid organisms, a mutation of one of the K essential and unique genes
still allows the individual to survive if the mutation is recessive and in the second
DNA sequence (haplotype) the deleterious mutation of the corresponding gene
(allele) have been avoided. Thus, we restrict ourselves to the simpler haploid or-
ganisms, like bacteria or haploid yeasts. Let ¢ = 1 — p be the probability of an es-
sential gene to be mutated. We estimate the maximum mutation probability ¢, or
minimal reliability p. = 1— ¢, , which allows the whole organism to survive; more
precisely, for p = p.(L) the probability R of survival reaches 0.5:

R(p,L) > 1/2 for p > pu(L) . (1)

We now assume the various mutations to be identically and independently dis-
tributed, and the same happens to the paralogs. Then trivially, p* > R > p*, with
R ~ p" if lots of paralogs are available to replace defect genes, while R ~ p" if
paralogs are rare. According to SLONIMSKI et al. (1998), SLONIMSKI (1999), and
TIURYN, RADOMSKI, SLONIMSKI (1999, 2000) the probability that the “original”
gene have n paralogs is &, = 27! which is 1/2 for n = 0; thus K=L/2, which is ap-
preciably higher than the above estimate K ~ L/4. This is possible, because many
paralogs, after a long evolution, could fulfil functions different than originally.
Thus, we allow for additional replacement effects, called pseudo-paralogs, to de-
crease the number K of irreplaceable essential genes from L/2 to L/4. These
pseudo-paralogs have the same reliability p as the original gene and its paralogs.
Paralogs and pseudo-paralogs together are called replacements (group of genes
mutually complementing their function) and are added to the one original gene.

If n; is the number of replacements for function i, with i = 1, 2, ..., L, then
the failure probability for function i is ¢"' and the survival probability R of

the whole organism is:
R=H(1—q’“ +1). (2)

The simplest assumption is to give all functions exactly the same number n
of possible replacements (paralogs or pseudo-paralogs). Then the survival proba-
bility is

R=(1-¢") =exp(- Lg"") (3a)
for ¢" << 1, giving for R = 1/2:
In(2)/L=qg"" or q,=(0.7/L)""". (3b)

With L =300 and n = 1 the maximally allowed failure rate is thus ¢, » 0.05.
This seems to be a reasonable number if nature achieves reliability more by redun-
dancy then by reliability of every element (GAVRILOV, GAVRILOVA 2001), while
technology uses little redundancy and a much higher reliability (lower ¢) for
the single elements. If n = 0 instead for all functions, i.e. without any replace-
ments, ¢g.= 0.0023 is much smaller.
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The above estimate, however, is too optimistic since the number n fluctuates
from function to function and is distributed so that K = L/4 of the L essential genes
have no replacement, n = 0. Taking only paralogs with probability ©, =27""', as
mentioned above, and thus L = 2K, we get from a straightforward Monte Carlo
simulation ¢. = 0.045, 0.0046, 0.0005 for L = 30, 300, and 3000, respectively.
Adding pseudo-paralogs with a Poisson distribution of average 0.7 we get L = 4K
and higher thresholds ¢. = 0.083, 0.0091, 0.0009.

Table 1. Values of ¢, threshold for different distributions of paralogs (see text for details)

Threshold g, for varying genome size [L]

Paralog distribution

30 300 3000
Exponential 0.045 0.0046 0.0005
Poisson 0.083 0.0091 0.0009
Connectivity* 0.039 0.004 0.0004

*Values of ¢, threshold calculated using the standard Hoshen-Kopelman algorithm for connectivity for both ex-
ponential and Poisson distributions

If instead we require some connectivity in genomic space, we may apply per-
colation theory (STAUFFER, AHARONY 1994, BUNDE, HAVLIN 1996, SAHIMI
1994) for a square lattice with L horizontal lines of varying length 1 + n; each.
Each line i stores the original gene and its possible #; replacements. The organism
then is defined as viable if a path of unmutated genes or replacements on near-
est-neighbour lattice sites connects the top line (i = 1) with the bottom line (i = L).
We check for the percolation threshold ¢., defined so that on average half of
the organisms survive, i.e. that half of the lattices percolate from top to bottom.
Using the standard Hoshen-Kopelman algorithm (STAUFFER, AHARONY 1994)
for connectivity, we get with the same exponential distribution of the number of
paralogs and Poisson distribution of the number of pseudo-paralogs: ¢g. = 0.039,
0.004, 0.0004, not as good as the simpler criterion above. These distributions are
chosen so that again L = 4K.

In summary, the introduction of suitable replacements into haploid genomes
allows an up to four times higher error rate g, like 0.0091 instead of 0.0023.

In further studies we will try to show what mechanisms could generate this
specific distribution of paralogs observed by SEONIMSKI et al. (1998). Our pre-
liminary evolutionary simulation in the spirit of TIURYN et al. (1999), which
worked best, was the following algorithm:

Initially all L functions are represented in n =15 sequences (1 original and
14 paralogs). At each iteration each individual first undergoes the Verhulst test,
i.e. it dies with probability N,,,/N,... where N,,, is the current size of the popula-
tion and N, is a parameter often called the carrying capacity. Then each organ-
ism only survives with probability (p;)", where n is the largest number of paralogs
for any of its L functions. For each survivor we then determine the probability R
that all L functions are still working even though each paralog works only with
probability p. Those who survive produce four offspring and die. At birth, for each
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of the L functions and each paralog, one mutation occurs which with probability
0.01 either increases (with probability 0.4) or decreases (probability 0.6) the num-
ber of paralogs by 1.

Further studies of different phenomena responsible for generation of the infor-
mation redundancy in genomes, particularly those restricting the genome size
should be undertaken.
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