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We discuss the Jukes and Cantor’s one-parameter model and Kimura’s two-parameter
model unability to describe evolution of asymmetric DNA molecules. The standard dis-
tance measure between two DNA sequences, which is the number of substitutions per
site, should include the effect of multiple base substitutions separately for each type
of the base. Otherwise, the respective tables of substitutions cannot reconstruct the
asymmetric DNA molecule with respect to the composition. Basing on Kimura’s neutral
theory, we have derived a linear law for the correlation of the mean survival time of nu-
cleotides under constant mutation pressure and their fraction in the genome. According
to the law, the corrections to Kimura’s theory have been discussed to describe evolution
of genomes with asymmetric nucleotide composition.

We consider the particular case of the strongly asymmetric Borrelia burgdorferi
genome and we discuss in detail the corrections, which should be introduced into the
distance measure between two DNA sequences to include multiple base substitutions.
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1. Introduction

Measuring the evolutionary distance between two DNA sequences requires the
knowledge of the substitution rates of the nucleotides. Each DNA sequence is com-
posed of four different nucleotides, Adenine (A), Guanine (G), Thymine (T) and
Cytosine (C). A specific sequence of these nucleotides determines the information,
which is transferred by the DNA molecule. In particular, the information, which
is translated for proteins is coded by the genetic code, a specific set of triplets of
nucleotides (codons) each of which codes for one amino acid.! Although there are 64
possible triplets, the number of amino acids is twenty. This means that the genetic
code is degenerated because a given amino acid could be coded by more than one
codon. In fact, it is the third nucleotide position in the codon, which is the most
degenerated. Therefore, two different organisms for the same function can use the
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same protein coded by different DNA sequences. Furthermore, it is also possible
that substitution of one amino acid by some other amino acid does not change the
function of the protein. By comparing two organisms, we can estimate the phyloge-
netic distance between them simply counting the number of substitutions between
the homologous sequences.

Kimura’s neutral theory? of evolution assumes the constancy of the evolution
rate, where the mutations are random events, much the same as the random de-
cay events of the radioactive decay. In this case, the mutations follow the Poisson
statistics:

o) =2, 1)

where 7 is the mean survival time for the nucleotides and ¢(t) is the decay proba-
bility density at time moment ¢ > 0. Thus, the number of nonmutated nucleotides
at time moment ¢ is equal to:

N(t) = N(0)e /. (2)

If we knew the mean survival time 7, we could set a proper time scale for genomes.
However, we do not know the ancestral DNA sequences and the mean survival time
of nucleotides remains unknown. Therefore, in order to examine DNA sequence evo-
lution, we need to consider the accumulated substitutions between two homologous
DNA sequences, which have a common ancestor. In case of DNA sequences, there
are four possible nucleotides and therefore a model of nucleotide substitutions has to
be described with the help of twelve substitutions, where four of them represent
transitions A «—— G, C «— T, and the remaining eight substitutions represent
transversions, A «—— C, A «— T, G «—— C, G «— T. In order to correct for
multiple nucleotide substitutions, which appear in the evolving DNA sequences,
one usually considers a statistical model of DNA evolution in terms of the system

of linear differential equations®%:
dP,p(t)
Ti = Z Mar Pys(t) (3)
5

where «, 8, v = A, T, G, C, the symbol P,s(t) represents the substitution proba-
bility from nucleotide o at time 0 to 3 after time ¢, and M, is a 4 x 4 substitution
rate matrix, which includes the substitution rates from one nucleotide to another.
By construction, the sum by row of M is always zero and therefore there are twelve
unknown substitution rates to be found.

Jukes and Cantor?® assumed in their model that all substitutions occur at the
same rate, Mq, = u (where a # ), and they concluded that the number of sub-
stitutions per site between two homologous DNA sequences originating from the
common ancestor is equal to:

K:—Zln(l—gD), (4)
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where D is equal to the proportion of different nucleotides between the DNA
sequences under examination. The second model, which is commonly used in
1,%% which per-
mits different types of substitution rates (transitions and transversions). In

constructing phylogenetic trees, is Kimura’s two-parameter mode

Kimura’s two-parameter model, the number of substitutions between homologous

sequences is given by the following expression®:

1 1
K = —3 (1= 2D; = Dy) = 7 In(1 = 2Dy), (5)

where D1 and D> are equal to a fraction of the substitutions recognized as transi-
tions and transversions, respectively, at which the two sequences differ from each
other.

The problem of the estimation of divergence K between two species is even more
complicated, because some mutations are lethal, they lead to the death of organ-
ism in which they have occurred. All these phenomena, which should be taken into
consideration when the phylogenetic distances are estimated, make the task very
complicated. The main problem with the above simplifications of the description
of DNA sequence evolution is that they fail to predict the asymmetry of the DNA
molecule. Recent progress of genome sequencing programmes has brought many
complete genome sequences, and their analyses have shown that the simplifying as-
sumptions of one-parameter model, two-parameter model and even six-parameter
model® 6
The nucleotide composition of one DNA strand is different from the nucleotide
composition of the complementary strand. One of the explanations of this obser-
vation is that there is a different mutational pressure on each DNA strand, which
results from different mechanisms involved in replication of the two DNA strands.
The models including the mutational pressure have to be considered to clear up its
role in the resulting asymmetry observed in many genomes.

are unable to describe the mutational pressure imposed on these genomes.

2. Tables of Substitution Rates

The topology of the replication fork requires different enzymatic mechanisms for the
synthesis of leading and lagging fragments of the DNA molecule with different error
rates.” ! Usually, the leading fragment of each DNA strand is richer in Guanine
than in Cytosine and it is richer in Thymine than in Adenine.?:12:13:15 Hence, the
replication, which is asymmetric, is responsible for introducing strong trends into
the nucleotide distribution along the DNA strands.'® The trends can be observed
both in intergenic sequences and in genes (see, e.g., Refs. 8 and 16). The example
of such asymmetry in genes is shown in Fig. 1 (curve (a)), where there is plotted a
cumulative walk on number of Guanine and Cytosine for a DNA sequence (Watson
strand) consisting of spliced nucleotides from the third positions in codons of the
genes of the Borrelia burgdorferi genome. In this case, the walker follows the DNA
sequence and it goes “up” if it meets Guanine and it goes “down” if it meets
Cytosine, otherwise, it waits. The ORI and TER in Fig. 1 determine the switching
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Fig. 1. A cumulative walk G—-C at third nucleotide position in codons of the genes of Watson DNA
strand in Borrelia burgdorferi genome. The curve (a) represents the original DNA sequence, (b) the
sequence in (a) mutated according to the one-parameter Jukes—Cantor model of evolution after
t = 5000 time steps, (c) the sequence in (a) mutated according to empirical table of substitution
rates [Eq. (9)] after ¢ = 5000 time steps, (d) the sequence in (a) evolved according to corrected
one-parameter Jukes—Cantor model after t = 5000. The ORI is not located at the middle because
of the different number of genes at leading and lagging fragments of DNA strand.

mode of replication between the leading fragment and lagging fragment of the DNA
strand (the ORI-TER fragment and TER-ORI fragment, respectively).

It is known that even in intergenic sequences, there is a relatively strong
triplet signal in FFT power spectrum as it has been discussed in papers by
Voss,'” Peng et al.,'® Buldyrev et al.'® and Gierlik et al.2° Thus, we assumed that
some intergenic sequences have derived from coding sequences and could freely
accumulate mutations with frequencies determined by the replication-associated
mutational pressure.

By comparing intergenic sequences with homologous sequences of genes, we were
able to construct an empirical table of substitution rates describing the mutational
pressure for the leading strand of the Borrelia burgdorferi genome. We could expect
that the properly constructed tables of substitution rates should retain both the
DNA sequence composition and the strand asymmetry. Usually, one tries to find the
unknown twelve substitution rates Myg (o # ) with the help of the four equations
describing the steady-state condition:

Fod Mapg=> FsMp,, (6)
Ba B#a

where a, 8 = A, T, G, C, and F, represents the fraction of nucleotide a. The
problem of the infinite number of solutions is avoided by an additional assumption



Multiple Base Substitution Corrections in DNA Sequence Evolution 1047

that some of the substitution rates are equal. However then, the reconstructed DNA
sequence loses the asymmetry of the leading and lagging strands (see curve (b) in
Fig. 1). Another way to avoid the problem is using a computer random number
generator for generating the substitution rates M,z.2* Although these tables satisfy
the balance equations (Eq. (6)), they do not have any biological meaning. In our
recent paper,?? an empirical table M of substitution rates has been constructed
for Borrelia burgdorferi genome (its DNA sequence has very strong leading-lagging
asymmetry):

a UWAT UWAG UWAC

1% b 1% W
M — uWra uWwre uwrc (7)

uWaa uWar C uWac
chA UWCT UWCG d

basing on the intergenic sequences, where by definition®® the values of the para-
meters a, b, ¢, d are such that the sum by rows in the matrix M is equal to zero,
the parameter u represents the mutation rate, W,z denotes the weight factor for
the substitution from nucleotide « to nucleotide § and the sum of the weights over
all different values of o and (3 is equal to one:

> Was=1. (8)

a#p

In this specific representation, the factors W, are nothing else but the relative
substitution rates. In the case of the Borrelia burgdorferi genome, the numerical
values of W, for the leading DNA strand are the following:

Wea =0.1637 Wear =0.1157 Wgc = 0.0147  Wag = 0.0667
War = 0.1027  Wac =0.0228 Wrg =0.0347  Wrpa = 0.0655 9)
Wrc =0.0350 Wee =0.0470  Wea =0.0702  Wer = 0.2613.

The numbers are the same for the lagging DNA strand, but the respective symbols
of the nucleotides should be substituted for the complementary ones, i.e., A for T,
T for A, G for C and C for G. This empirical table of substitution rates retains the
asymmetry of the DNA strands. It is evident in Fig. 1 (curve (c)), where the results
of computer simulations with the mutation events according to the table, Eq. (9)
are presented.

If we introduce the following four relations:

Wo=> Wag, (10)
B#a
where a = A, T, G, C (note that W + Wp + Wg + W = 1), then the fraction of

nonmutated nucleotides « at time moment ¢ can be written as:

Fo(t) = Fo(0)(1 — ulW,)t = F,(0)etm—uWa) (11)
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According to Eq. (2), the same can be written as follows:
Fo(t) = Fo(0)e ™"/, (12)

and hence we can relate the substitution rate W, to the mean survival time, 7, of
the nucleotide a:
1 1
- ~ , (13)
In(1 —uWy)  ulW,

where the last equation is true for small value of the substitution rate wu.

T =

We can relate the probability p(t) of a mutation event after time ¢ to the prob-
abilities Pa(t), Pr(t), Pc(t) and Pc(t) that, respectively, nucleotide A, nucleotide
T, nucleotide G or nucleotide C has been substituted for another one, i.e.,

p(t) = Fa(0)Pa(t) + Fr(0)Pr(t) + Fa(0)Pa(t) + Fe(0)Pe(t), (14)

where
t
Pu(t) = / ga(t)dt' =1 — et/ (15)
0

and g4(t') is the decay probability density of nucleotide o at time moment ¢ > 0,
defined in Eq. (1). Equation (14) reduces to the following relationship for the mean
survival time of the nucleotides:

e ™ = Fa(0)e /™ + Fr(0)e "™ + Fg(0)e™ /™6 + Fo(0)e /7, (16)
which becomes very simple for the vanishingly small value of ¢:
1 1 1 1 1
-~ FA(0)— + Fr(0)— + Fg(0)— + Fc(0)—. 17
~ ~ FA(0)— + Pr(0)—— + Fa(0)— + Fo(0)— (1)

We have examined 7, (o« = A, T, G, C) with the help of substitution tables, which
have been published for various genomes (e.g., Refs. 23 and 24) both analytically
and in computer simulations, and we have found that all of them share a unique
feature (see also Ref. 22): if the genome under consideration is in equilibrium with
respect to the mutation events, the fraction F, of each type of nucleotide o = A,
T, G, C is linearly related to the respective mean survival time 7,:

F, =mota +co. (18)
The correlation coefficient is as high as 0.999. This property of DNA composition
does not held for tables of substitution rates, M, constructed for DNA sequence
under selection pressure. We observed that even computer generated tables, M,
which satisfy the steady-state condition (Eq. (6)), typically will not satisfy the
property in Eq. (18). It is shown in Fig. 2, where the relation between the mean

survival time and F, is plotted. In the case of the computer-generated table, the
following substitution rates have been used:

Waa =0.0219 Wger =0.0254 Wae =0.0426 Wae = 0.0211
War =0.0621  Wyac = 0.0403 Wrpg =0.0071  Wpa = 0.0458 (19)
Wre =0.0564 Wgg =0.0346 Wea =0.1825  Wer = 0.4604
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Fig. 2. Mean survial time of nucleotide « = A, T, G, C versus occurrence of them, Fy, in
third positions in codons of leading strand ORFs of Borrelia burgdorferi genome. Two cases are
plotted: the one corresponding to the empirical table [Eq. (9)] and another one corresponding to
the computer generated table of substitution rates [Eq. (19)].

and the same nucleotide fractions as in the case of the empirical tables, i.e., Fa =
0.306, Fr = 0.4901, Fe = 0.1365, Fc = 0.0675.

What are the consequences of the linear evolution law for genomes, which have
an equilibrium composition? The steady state condition (Eq. (6)) ensures that the
mean value of the respective nucleotide fraction F,(¢) should be the same at each
time moment ¢. In such a genome, the mean survival time 7 of a nucleotide should
be a conserved quantity and it is clear that it tends to satisfying an equation
analogous to Eq. (17) (which is always true for the sequences being nondistant
from their predecessor) at any time moment ¢, i.e.,

L = Fa(t) = + Fr(t) = + Fo(t) — + Fo(t) . (20)
T TA TT TG TC
Once the left-hand side of the equation is a constant, the mean survival time of
each nucleotide a = A, T, G, C should be proportional to the fraction F,, it belongs
to in the genome. Moreover, in a natural genome, these dependences are correlated
by the same linear rule, defined in Eq. (18).
If we apply the linear rule to the one-parameter Jukes—Cantor model, every
element M,z of the respective table of substitution rates will be expressed in terms
of two parameters, mg and cg, from Eq. (18), instead of only one value u — the
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mutation rate, i.e.,

a 1/(moFa +co) 1/(moFa +co) 1/(moFa + co)

N 1/(moFr + co) b 1/(moFr 4+ co) 1/(moTa + co)
1/(moFg + co) 1/(moFg + co) c 1/(moFg + co)
1/(moFc+co) 1/(moFc +co) 1/(moFc+ co) d

(21)
where we have used the relation from Eq. (13):
uW, = (22)

- moFa+co’
and the meaning of the parameters a, b, ¢, d is the same as previously. In an
analogous way, the extention of the two-parameter Kimura’s model to the one
including the linear law corrections is straightforward.

3. Discussion of the Corrections to One-Parameter Model

According to the one-parameter model, the substitution probability Pag(t) of hav-
ing nucleotide [ after time ¢ instead of nucleotide « at time ¢ = 0 is expressed with
the help of the formula:

1 1
Pap(t) = 11 e, (23)

if @ # [ (see details in Ref. 5). Hence, the decay probability of a nucleotide «
is equal to Pa(t) = > 5., Pap = (3/4)(1 — e 4ut). The geneticists consider this
decay probability as the probability of accumulation of mutations after time ¢.
The last formula could be also concluded from Eq. (15), where the same P,/(t)
is expressed in terms of the mean survival time 7,. In Fig. 3, one can compare
the time dependence of this decay probability (represented by dot-dashed curve)
with the analogous result of computer simulations for which the empirical table
Eq. (9) of substitution rates has been used. The divergence of both results is evident.
Thus, Kimura’s model predictions, e.g., concerning genetic distances between two
species can be very far from the expected ones, especially in the case of asymmetric
genomes. We could experience this feature of the one-parameter model already
from the analysis of the G-C DNA walk (curve (b)) in Fig. 1. The linear evolution
law we have discovered, Eq. (18), for mean survival times of nucleotides introduces
an additional requirement for the evolution rate — the substitution rates and the
fractions of nucleotides in the genome become correlated. Another consequence of
the linear evolution law is that of the numbers NX°*(¢) of returns after time ¢ to the
same nucleotide type a = A, T, G, C at a site as the original sequence are correlated.
The return substitutions are not simply the back mutations (reversions) but they
may represent a long sequence of various substitution events (at most ¢ after time
t) ending with the substitution leading to the same type of the nucleotide at the
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Fig. 3. Time dependence of the mulation probability for the nucleotides A, T, G, C. The result of
the one-parameter Jukes—Cantor model has been represented with the help of dot-dashed curve.
In the latter case, the mean survival time for a nucleotide has been used. The other curves
represent the result of computer simulations, in which we used the empirical table of substitution
rates [Eq. (9)].

site as in the original DNA sequence. In Fig. 4, we present the time dependence of
the ratio:

0

Bl =N

(24)
where N, (0) denotes the number of nucleotides « at the original DNA sequence.
This ratio defines the site return ability of each type « of nucleotide in the genome.
We can observe that the lower the fraction of some kind « of nucleotide, the lower
the respective return ability, R,. It is never the case in Kimura’s one-parameter
model for which there is the same return ability for each nucleotide after time ¢ > 7.

If we correct the values of Kimura’s model substitution rates, according to
Eq. (21) so that they all satisfy the linear evolution law Eq. (18), the DNA sequence
evolving under mutation pressure will keep the asymmetry of its composition. It
can be observed in Fig. 1 in the case of curve (d). This result is very optimistic
because this means that even the simple models of evolution, like one-parameter
and two-parameter Kimura’s models can still be used to estimate distances between
species if the respective corrections to substitution rates are introduced. However,
we should remember that the biological meaning of the two unknown parameters,
mo and ¢, in the linear law introduced in Eq. (18) should be cleared up.
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Fig. 4. Dependence of the ratio, NZt(t)/Nq (t = 0), on time for the number of returns after time
t to the same nucleotide type « at a site as in original sequence and the number of this type of
nucleotides at original sequence.

If the genome under consideration is in equilibrium with respect to the mutation
events, it experiences a constant mutational pressure and the mutation pressure is
the same for every nucleotide. The latter is evident if we substitute, in Eq. (20), the
nucleotide fractions F, (o = A, T, G, C) for the respective mean survival times of
the nucleotides according to Eq. (18). Then, we obtain the following simple relation
between the mean survival time 7 of the nucleotides and the mutation pressure u:

1 1 1 1 1
——4m0+co(—+—+—+—)m4m0+cou, (25)

where the right-hand side we have used Eq. (13). This is important result since it
means that even in asymmetric genomes, there is the same mutation pressure on
each DNA strand (leading and lagging).

4. Conclusions

We discussed Kimura’s models of evolution of DNA sequences and we showed
the way to correct the substitution rates in the models to describe properly the
evolution of asymmetric genomes. The linear evolution law we discovered for the
mean survival times of nucleotides and their fractions in the genome, introduces
a specific correlation between the frequencies of mutations at different sites of the
evolving DNA sequence. In particular, we observed that the number of reversions
in each site depends on the occurrence of the respective type of nucleotide in the
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original DNA sequence. The method presented by us allows description of the asym-
metric genomes, with respect to composition of the leading and lagging parts of
DNA sequences.
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