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Summary

The vast biodiversity of the microbial world and how

little is known about it, has already been revealed by

extensive metagenomics analyses. Our rudimentary

knowledge of microbes stems from difficulties

concerning their isolation and culture in laboratory

conditions, which is necessary for describing their

phenotype, among other things, for biotechnological

purposes. An important component of the under-

studied ecosystems is methanogens, archaea

producing a potent greenhouse-effect gas methane.

Therefore, we created PhyMet2, the first database that

combines descriptions of methanogens and their cul-

turing conditions with genetic information. The data-

base contains a set of utilities that facilitate interactive

data browsing, data comparison, phylogeny explora-

tion and searching for sequence homologues. The

most unique feature of the database is the web server

MethanoGram, which can be used to significantly

reduce the time and cost of searching for the optimal

culturing conditions of methanogens by predicting

them based on 16S RNA sequences. The database will

aid many researchers in exploring the world of metha-

nogens and their applications in biotechnological

processes. PhyMet2 with the MethanoGram predictor

is available at http://metanogen.biotech.uni.wroc.pl

Introduction

Innovations in DNA sequencing technologies allowed

for the rapid development of metagenomics, DNA

sequencing of environmental samples, and conse-

quently, identification of a plethora of new uncultivated

microorganisms (Meyerdierks et al., 2005; Chojnacka et

al. 2015; Emerson et al., 2016). Many of the microor-

ganisms are of great importance as they might play a

significant role in climate change, for example, the

methanogen, that is, methane-producing archaea, Can-

didatus ‘Methanoflorentaceae stordalenmirensis’ (Mon-

dav et al., 2014) or in the understanding of Eukaryote

evolution, for example, the methanogens from the

Asgard lineage (Zaremba-Niedzwiedzka et al., 2017).

The former is a substantial contributor to methane-

based positive feedback in global warming due to its

prevalence in thawing permafrost, the latter represent an

archaeal clade that closely affiliates with eukaryotes in

phylogenomic analyses. At present, there are many

more microorganisms identified by metagenomic high-

throughput methods than by isolation. However, in order

to describe the phenotype of microorganisms, that is, to

gather data on their physiology, morphology and bio-

chemistry, the metagenome analyses need to be supple-

mented with studies of microorganisms isolated in pure

culture. Unfortunately, searching for the optimal culturing

conditions is expensive, time-consuming and technically

difficult.

As in the case of reverse genetics, which largely

dominated the classical genetics approach, it could be

hypothesized that in silico prediction of culturing condi-

tions for newly discovered microorganisms would be

possible based on DNA sequences. Indeed, the first

approaches have already shown that the phylogenetic

signal from DNA may be used to predict the phenotype

of microorganisms, especially the conserved traits,

which are encoded by numerous genes (Martiny et al.,

2013; Goberna and Verd�u, 2016; Martı́nez-Garcı́a et al.,

2016). Since the prediction relies on the amount of

genetic and phenotypic information available, a compre-

hensive database is a vital preliminary in the construc-

tion of a prediction algorithm (Martiny et al., 2013;

Goberna and Verd�u, 2016; Martı́nez-Garcı́a et al.,

2016). Having a comprehensive database for methano-

gens (Jabło�nski et al., 2015) at our disposal, we decided

to focus on these particular microorganisms in the

search for the best algorithm that would predict
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culturing conditions based on genetic markers. A robust

prediction algorithm would be a milestone in research on

uncultivated microorganisms.

We built the methanogen database because we have

had experience with these microorganisms from previ-

ous studies and consider them of great global impor-

tance (Jabło�nski et al., 2015). They are widespread in

nature but restricted to anaerobic habitats, for example

wetlands, landfill sites, and digestive tracts of animals.

They are often found in extreme environments and might

even be capable of growing on Mars (Conrad, 2007;

Thauer et al., 2008; Wagner and Liebner, 2009; Mickol

and Kral, 2016). Methanogens are recognized as the

largest biogenic source of methane, which is a potent

greenhouse gas, and consequently as an important fac-

tor in the global carbon cycle (Houweling et al., 2008).

They also show growing potential for many biotechno-

logical uses (Goyal et al., 2016).

In order to create the predictor of culturing conditions

for newly discovered methanogens, the first version of

our methanogens database, accessible since January

2015, was updated (Jabło�nski et al., 2015). The second

version of the database transformed it from a simple

information repository to an advanced platform for data

analysis. PhyMet2 (Phylogeny and Metabolism of

Methanogens) is the largest database that provides

information on culturing conditions and sequence data

for methanogenic archaea with a user-friendly interface

and a set of tools for interactive data browsing, search-

ing, sorting, comparing and downloading (Fig. 1). It is

the first database that combines species descriptions

and culturing conditions with genetic information, thereby

setting standards for other biological databases.

The data contained in PhyMet2 was used to develop a

web server, MethanoGram, that quickly and accurately

predicts conditions for optimal growth of methanogens:

temperature, pH and NaCl concentration, that is, the key

factors that shape the composition of methanogenic com-

munities (Wen et al., 2017). Using this tool, researchers

could reduce the number of experiments and thus the

cost of searching for the optimal culturing conditions of

newly discovered methanogens. The predictions are

based on a standard phylogenetic marker 16S rRNA.

Results and discussion

PhyMet2database

PhyMet2 contains 153 manually curated and up-to-date

high quality records of methanogenic species. Sequence

data was collected from the NCBI (www.ncbi.nlm.nih.

gov) and Silva (www.arb-silva.de) databases, and addi-

tional information, according to the minimal standards

(Boone and Whitman, 1988), was obtained by thorough

manual search of literature (see Supporting Information).

The simplest access to the data in PhyMet2 is avail-

able via the customizable table on the main page, which

allows, for example, to select the species most suitable

for cost-effective methanogenesis, or to design optimal

operating conditions in bioreactors for a particular

methanogen. To make the search effective and specific,

the users can apply multiple filters at the same time or

explore the database using the ‘Advanced’ search tab,

which provides more filtering options for numerical and

character data. Users may also use the ‘Taxonomy’ tab,

where the methanogens are grouped into classes,

orders, families and genera. The search results can be

easily downloaded into a CSV file and all data in XML

format. The user can also create charts visualizing at

the same time three selected methanogen features, and

infer from their distribution how, for example, key

culturing conditions characterize the methanogens and

identify interesting outliers.

PhyMet2 contains a set of bioinformatics utilities,

which may be especially helpful in the characterization

of new methanogens. They enable the user to: (i)

search for potential nucleotide or protein sequence

homologues, (ii) interactively analyze the phylogeny of

methanogens and (iii) predict key optimal culturing con-

ditions for newly discovered methanogens (Fig. 1). In

order to find similarity between a query sequence and

manually curated high-quality sequences deposited in

PhyMet2, we set up a standalone Blast algorithm

(Boratyn et al., 2012). The interactive dot plots and 16S

rRNA phylogenetic tree were implemented in Plotly and

phylotree.js, respectively (see Supporting Information).

The prediction of culturing conditions is performed by

the web server MethanoGram based on 16S rRNA.

MethanoGram predictor

The unique feature of PhyMet2 is a web server, Metha-

noGram, that predicts conditions for the optimal growth

of methanogens: temperature, pH, NaCl concentration

and growth doubling time. It makes the prediction using

a random forest algorithm (Breiman, 2001) trained on

n-grams (k-mers, subsequences of length n) extracted

from 16S rRNA. The random forests and n-grams were

chosen because of their speed and good performance

(McNair et al., 2012; Burdukiewicz et al., 2017). More-

over, with the advent of alignment-free phylogenetics,

n-grams are becoming more commonly regarded as the

carriers of evolutionary information (Bonham-Carter

et al., 2014). In order to avoid overfitting and to find the

best-performing predictors, we conducted a nested

cross-validation over 20,000 different models. The

details of the training procedure as well as the results

are described in the Supporting Information.
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While searching for the most accurate predictor, we

evaluated combinations of n-grams of different lengths.

We also tested our algorithms trained on: (i) the informa-

tion from a single type of molecular marker, 16S rRNA

or mcrA and (ii) from both markers at the same time.

Comparing the prediction results from the two molecular

markers, we discovered that in the majority of cases, the

most relevant information contained in n-grams was

derived from 16S rRNA. Only for growth doubling time

and optimal growth temperature, the addition of n-grams

extracted from mcrA allowed training of slightly more

accurate predictors (see Supporting Information). As

iterations of MethanoGram based solely on 16S rRNA

are as accurate or almost as accurate as iterations

trained on 16S rRNA and mcrA, we decided to employ

only the rRNA sequences. Therefore, potential users of

MethanoGram have to upload only the 16S rRNA

sequence to predict the culturing conditions. The mean

error, for example, of the predicted optimal growth pH is

0.45, which means that the user can expect the optimal

pH in the range of this deviation (Table 1).

We also compared MethanoGram to a null model

which predicts a given culturing condition for a single

strain as the median value of culturing conditions for

all other strains (Fig. 2). Since the null model does

not incorporate any sequence-based information, we

expected it to show significantly higher mean error than

the well-optimized MethanoGram. Although Methano-

Gram always outperforms the null model for all culturing

conditions, the differences range from marginal (0.01)

for the optimal growth pH to very drastic (6.138C) for

the optimal temperature (Fig. 2). These differences can

Fig. 1. PhyMet2 is a multi-functional platform that allows for various analyses using methanogens’ species names, taxonomy, culturing
conditions, environmental/phenotype features and nucleotide/protein sequences. The analyses include advanced data browsing, exploring
phylogeny, plotting selected features, searching for potential sequence homologues and predicting key culturing conditions for newly discovered
methanogens based on 16S rRNA. The database comprises 153 methanogens characterized by � 50 features organized into 13 categories,
88 complete genomes, � 200,000 protein coding nucleotide/amino acid sequences, and � 1200 rRNA and � 4100 tRNA sequences.

Table 1. Results of jackknife test of MethanoGram.

Culturing condition
Mean
error

Normalized
mean error

Growth doubling time (h) 16.3 0.45
Optimal growth temp. (8C) 6.67 0.53
Optimal growth pH 0.45 0.73
Optimal growth NaCl (mol dm23) 0.13 0.38

The normalized mean error is the mean error divided by standard
deviation of respective culturing condition.
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reflect (i) specificity of culturing traits in relation to meth-

anogenic species, (ii) uncertainties concerning their

measurements during taxa description, for example, low

density of measurements and (iii) weak correlation

between culturing traits and n-gram distribution. There-

fore, the future versions of MethanoGram have to be

trained on n-grams derived from a much wider array of

genes and culturing data.

MethanoGram is one of the first approaches aiming at

predicting the phenotype of microorganisms based on

molecular markers, and hopefully will boost further research

in the field. We would also like to apply our algorithm to pre-

diction of culturing conditions for other microorganisms.

The exact details on training of MethanoGram are

accessible in Supporting Information. The code neces-

sary to reproduce the analysis is hosted online: https://

github.com/michbur/PhyMet2_supplements.
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Supporting Information

Additional Supporting Information may be found online in

the supporting information tab for this article.

Supporting Information S1 Fig. 1. The Venn diagram of

methanogenic species used in the analysis.

Supporting Information S1 Fig. 2. The scheme of tuning

procedure which was aimed at receiving the optimal values

and combination of random forest parameters and the infor-

mative n-grams. The tuning of parameters in the random

forest algorithm was subjected to fivefold cross-validation

and the final step to threefold cross-validation.

Supporting Information S1 Table 1. Mean errors of the

best predictors found in the nested cross-validation for three

possible data sources.

Supporting Information S1 Table 2. The hyperparameters

found in the nested cross-validation.

Supporting Information S2.

Supporting Information S3 Fig. 1. The phylogenetic tree

obtained in MrBayes for 16S rRNA sequences of methano-

gens. Particular taxonomic groups were indicated in differ-

ent colours. Values at nodes indicate posterior probabilities.

The values smaller than 0.9 were omitted.

Supporting Information S3 Fig. 2. The phylogenetic tree

obtained in MrBayes for 16S rRNA sequences of methano-

gens, an-notated with a matrix of culturing conditions and

other features. Values at nodes indicate posterior probabili-

ties. The values less than 0.9 were omitted.
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