
Bioscience Reports (2018) 38 BSR20181325
https://doi.org/10.1042/BSR20181325

Received: 25 May 2018
Revised: 10 September 2018
Accepted: 20 September 2018

Accepted Manuscript Online:
28 September 2018
Version of Record published:
23 October 2018

Research Article

Tannerella forsythia Tfo belongs to Porphyromonas
gingivalis HmuY-like family of proteins but differs in
heme-binding properties
Marcin Bielecki1, Svetlana Antonyuk2, Richard W. Strange3, John W. Smalley4, Pawel Mackiewicz1,
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Porphyromonas gingivalis is considered the principal etiologic agent and keystone pathogen
of chronic periodontitis. As an auxotrophic bacterium, it must acquire heme to survive and
multiply at the infection site. P. gingivalis HmuY is the first member of a novel family of
hemophore-like proteins. Bacterial heme-binding proteins usually use histidine-methionine
or histidine-tyrosine residues to ligate heme-iron, whereas P. gingivalis HmuY uses two his-
tidine residues. We hypothesized that other ‘red complex’ members, i.e. Tannerella forsythia
and Treponema denticola might utilize similar heme uptake mechanisms to the P. gingi-
valis HmuY. Comparative and phylogenetic analyses suggested differentiation of HmuY ho-
mologs and low conservation of heme-coordinating histidine residues present in HmuY. The
homologs were subjected to duplication before divergence of Bacteroidetes lineages, which
could facilitate evolution of functional diversification. We found that T. denticola does not
code an HmuY homolog. T. forsythia protein, termed as Tfo, binds heme, but preferentially
in the ferrous form, and sequesters heme from the albumin–heme complex under reducing
conditions. In agreement with that, the 3D structure of Tfo differs from that of HmuY in the
folding of heme-binding pocket, containing two methionine residues instead of two histi-
dine residues coordinating heme in HmuY. Heme binding to apo-HmuY is accompanied by
movement of the loop carrying the His166 residue, closing the heme-binding pocket. Molec-
ular dynamics simulations (MD) demonstrated that this conformational change also occurs
in Tfo. In conclusion, our findings suggest that HmuY-like family might comprise proteins
subjected during evolution to significant diversification, resulting in different heme-binding
properties.

Introduction
Periodontal diseases belong to a group of infectious diseases, caused by an ecological shift in the compo-
sition of the subgingival biofilm, which results in inflammation and destruction of the tooth-supporting
tissues [1,2]. The analysis of bacterial species isolated from subgingival samples has identified the relative
abundance of the so-called ‘red complex’ members (Porphyromonas gingivalis, Tannerella forsythia,
and Treponema denticola), which are associated with the clinical features of chronic periodontitis [3-5].
Amongst them, P. gingivalis is considered to be the main etiologic agent and keystone pathogen respon-
sible for initiation and progression of chronic periodontitis [6,7].
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P. gingivalis is a heme auxotroph, therefore it must acquire this compound to survive and cause efficient infec-
tion establishment. In vivo, free heme released from heme-containing proteins is not available because it is rapidly
sequestered by host serum heme-scavenging proteins, which maintain the concentration of the free heme at very
low levels [8]. However, heme may be derived from host serum albumin, hemopexin, and hemoglobin by P. gingi-
valis heme-binding proteins. Amongst well-characterized heme acquisition systems of P. gingivalis is that encoded
by the hmu operon, comprising HmuR, a typical TonB-dependent receptor involved in heme transport across the
outer membrane [9-12], HmuY, a heme-binding protein [13-15], and four proteins with unknown function. P. gin-
givalis HmuY binds Fe(III)- and Fe(II)protoporphyrin IX [13]. Characterization of the HmuY–heme complex has
demonstrated that heme is in a low-spin Fe(III)/Fe(II), hexa-coordinate environment in the protein, with His134 and
His166 acting as the heme ligands [14]. Our crystallographic studies have revealed a uniqueβ-fold in the HmuY–heme
protein structure and confirmed bis-histidine heme ligation [15].

Given the important role played by HmuY in the physiology and virulence of P. gingivalis, it is crucial to be
able to reveal heme-binding mechanisms at the molecular level and to ascribe functions to the HmuY homologs of
other ‘red complex’ members. The work presented here substantially extends our knowledge of P. gingivalis HmuY
by presenting data on further structural characterization of this protein and novel data on a second member of P.
gingivalis HmuY-like family, Tfo produced by T. forsythia.

Experimental
Bacterial strains and growth conditions
P. gingivalis A7436, T. forsythia ATCC 43037, and Escherichia coli ER2566 (New England Biolabs), Rosetta (DE3)
(Novagen) strains were grown as described previously [16,17].

Overexpression and purification of proteins
P. gingivalis A7436 HmuY protein (NCBI ID: CAM31898), lacking the signal peptide and first five amino acid
residues (MKKIIFSALCALPLIVSLTSCGKKK) of the nascent secreted protein [15,18] and T. forsythia ATCC 43037
Tfo protein (NCBI ID: WP 046825712.1), lacking predicted signal peptide (MKMRNVMTLALVALSLAFVGC), were
overexpressed and purified [17]. To construct expression plasmids containing the DNA sequences encoding appro-
priate proteins, pTriEx-4 vector (Novagen), respective primers and restriction enzymes were used as described previ-
ously [13,15,17,18]. For crystallization purposes of apo-HmuY, DNA sequence encoding HmuY protein, lacking 34
N-terminal amino acid residues was amplified using primers listed in Supplementary Table S1, digested with NcoI and
XhoI and ligated into pTriEx-4 vector [13]. Concentrations of apo- and holo-HmuY were determined spectropho-
tometrically using the empirical molar absorption coefficients (ε280) 36.86 and 59.26 mM−1.cm−1, respectively [14].
The empirical molar absorption coefficient of Tfo (26.32 mM−1.cm−1) was calculated similarly.

Protein–heme complex formation
Heme (hemin chloride; ICN Biomedicals) solutions and protein–heme complexes were prepared [14] and moni-
tored in 100 mM Tris/HCl buffer, pH 7.5, containing 140 mM NaCl (TBS), or in 20 mM sodium phosphate buffer,
pH 7.4, containing 140 mM NaCl (PBS) by recording UV-visible spectra with a single beam Ultrospec 2000 spec-
trophotometer (Biochrom Ltd.) or a double beam Jasco V-650 spectrophotometer (10 or 2 mm path length cuvettes,
respectively). Titration curves were analyzed using equation for a one-site binding model and dissociation constant
(Kd) values were determined [19] using OriginPro 8 software (OriginPro Corporation). To analyze the redox prop-
erties of the iron present in the protein–heme complexes, sodium dithionite was used as the reductant and potassium
ferricyanide as the oxidant [14,20].

Circular dichroism and magnetic circular dichroism spectroscopies
Heme–protein complexes were prepared in 10 mM sodium phosphate buffer, pH 7.6. The protein concentration was
adjusted to 10 μM (for far-UV CD), 100 μM (for CD in the visible region), or 40 μM (for magnetic CD spectroscopy
(MCD) in the visible region). CD spectra were recorded at 200–260 nm (far-UV CD) or 340–660 nm (CD in the
visible region) at 25◦C using a Jasco J-715 or J-810 spectropolarimeter with a scan speed 50 nm min−1, response
time 2 s, and a slit width of 1.0 nm. MCD spectra were recorded in the visible region at 25◦C using a Jasco J-715
spectropolarimeter equipped with an electromagnet generating a magnetic field of 1.46 T, with a scan speed 200 nm
min−1, response time 2 s, and a slit width of 1.0 nm. Measurements were made using a quartz cell with a 2-mm path
length. Mean spectra were calculated from five independently recorded datasets.
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Native (PAGE), SDS/PAGE, and Western blotting
Samples were solubilized in appropriate application buffer at 37◦C for 1 h or at 100◦C for 5 min. For native PAGE, SDS
was not included in the separating gel, and the sample solubilization was carried out in application buffer without
SDS and DTT [21]. Gels were first stained for protein-bound heme with tetramethylbenzidine-H2O2 (TMB-H2O2)
and counterstained for proteins with Coomassie Brilliant Blue R-250 or G-250 (CBB) [21,22]. Western blotting was
carried out as described previously [17].

Crystallization, X-ray data collection, processing and structure
determination
Apo-Tfo protein was concentrated to 22 mg/ml, while apo-HmuY protein to 10 mg/ml. Crystals were grown using
the hanging-drop method at room temperature by equilibration of 2 μl of the protein solution with 2 μl of reservoir
solution, containing 3 M sodium malonate, pH 7.5, for apo-Tfo, or 2.4 M ammonium sulphate, 100 mM MES buffer,
pH 6.0, for apo-HmuY. Crystals were flash frozen in liquid nitrogen using the reservoir solution as a cryoprotectant
for apo-Tfo and 15% glycerol with reservoir solution for apo-HmuY. Crystals were stored in liquid nitrogen prior to
data collection.

For apo-Tfo, X-ray data were collected at Diamond synchrotron U.K., beamline I04-1 at 100 K to 1.47 Å resolution
and on the Rigaku X-ray generator FRE+ at the BARKLA X-ray Laboratory of Biophysics, University of Liverpool, at
room temperature to 2.54 Å resolution. For apo-HmuY, X-ray data were collected at Diamond on beamline I03 at 100
K to 1.40 Å resolution. In-house X-ray data were processed and merged with HKL2000 [23], synchrotron data were
processed with XDS [24] and merged by Aimless [25]. The room temperature Tfo structure was solved by molecular
replacement using 3U22.PDB as the search model and then used as the starting model for the SR dataset. The structure
of apo-HmuY was solved by molecular replacement using 3H8T.PDB as the search model. Both models were then
refined using Refmac5 [26] and rebuilt in Coot [27]. Water molecules and ligands were added to both apo-Tfo and
apo-HmuY models using Coot. Hydrogen atoms were added into the riding positions at the end of refinement. The
quality of both models was assessed using MolProbity [28].

Molecular dynamics simulations
Molecular dynamics simulations (MD) were performed using Gromacs 5.1.2 [29]. The crystal structures of apo-Tfo
and holo-HmuY with the heme group removed were prepared for MD runs by adding hydrogen atoms and assigning
charges to protein residues. Following energy minimization and solvation with TIP3P water and neutralization by
adding sodium ions to the simulation box, the system was equilibrated under NVE ensemble for 100 ps and then
switched to the NPT ensemble using the Parrinello–Rahman barostat [30], at a temperature of 300 K and 1 atm
pressure. The system was then further equilibrated at 300 K for 300 ps. Production runs using the NPT ensemble
with a time-step of 2 fs were then run for a total of 8 ns, by which time displacement of the ‘pocket loops’ were
clearly established. The Particle-Mesh-Ewald (PME) sum method [31] was used for all electrostatic calculations with
a cut-off distance of 1.0 nm. MD trajectories were examined using the VMD program [32].

Susceptibility to proteolysis
HmuY and Tfo were subjected to trypsin digestion [15], as well as to digestion by proteases produced by both species.
P. gingivalis cells were grown under high- or low-iron/heme conditions [13] and T. forsythia under high-iron/heme
conditions [16,17] in the presence of added purified 1 μM HmuY or Tfo proteins. As controls, P. gingivalis or T.
forsythia cultures without addition of the proteins was examined. Aliquots of samples were analyzed by SDS/PAGE
and Western blotting [17].

Heme sequestration experiments
Albumin–heme complex was prepared by incubating 120μM stock solution of human albumin (Sigma; A-8763) with
heme at a 1:0.9 protein to heme molar ratio to ensure that no free, uncomplexed heme remained in the preparation
[22]. Human hemopexin (Sigma; H-9291) and bovine methemoglobin (MP Biomedicals; 151234) were also used.
Co-incubation of apo-HmuY or apo-Tfo with hemoproteins and HmuY in apo-form with Tfo-Fe(III)heme com-
plex was carried out in PBS (pH 7.6 and 6) at 37◦C and monitored by UV-visible spectroscopy using holo-Tfo and
apo-HmuY each at 10 μM [14,21].
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Bacterial cell fractionation
Portions of bacterial cultures were centrifuged at 20000×g for 30 min at 4◦C and supernatants filtered using sterile
0.22-μm filters (Roth) to separate the cell-free culture supernatant and cells. The cell pellets were washed twice with
PBS and used to analyze the whole cell fraction. To separate outer membrane vesicles (OMVs), the filtered culture
supernatant was centrifuged at 100000×g for 2 h at 4◦C using a Beckman fixed-angle rotor (Type 70 Ti), and pelleted
membrane fractions were re-suspended in PBS. After ultracentrifugation, supernatant was concentrated 25× using
Amicon Ultra-4 Centrifugal Filter Ultracel-10K units (Millipore).

Quantitative reverse-transcriptase PCR
RNA was extracted from 0.5 × 108 to 4 × 108 cultured P. gingivalis or T. forsythia cells using the Total RNA Mini Kit
(A&A Biotechnology). Purified RNA was treated with DNase I and purified using Clean-Up RNA Concentrator Kit
(A&A Biotechnology). RNA integrity was verified by measuring absorbance and separating on agarose gel. Reverse
transcription was carried out using 1 μg of RNA using SensiFAST cDNA Synthesis Kit (Bioline).

PCR was performed using SensiFAST SYBR No-ROX Kit (Bioline) and the LightCycler 96 System (Roche). Ampli-
fication reaction started with initial denaturation at 95◦C for 2 min, 40 cycles of denaturation at 95◦C for 5 s, primer
annealing at 60◦C for 10 s, and extension at 72◦C for 20 s. The melting curves were analyzed to monitor the quality
of PCR products. Relative quantitation of tfo and hmuY genes was determined in comparison with 16S rRNA gene
of T. forsythia (gene ID: L16495.1) and P. gingivalis (gene ID: 2552647) as references, using the ��Ct method. All
samples were examined in triplicate for the target and reference genes. No template controls and negative controls
were included as reported previously [33]. All primers used in the present study are listed in Supplementary Table S1.

The statistical analysis was performed using Student’s t test. Data were expressed as mean +− S.D. For statistical
analysis, the GraphPad software (GraphPad Prism 5.0 Inc., San Diego, CA) was used.

Collection of HmuY/Tfo homologs and phylogenetic analyses
Searches for homologs for P. gingivalis HmuY and T. forsythia Tfo in GenBank database were carried out using
PSI-BLAST [34] assuming three iterations and E-value < 0.005. Next, the potential homologs containing domains
annotated as HmuY, i.e. 316577, 213031, and 213030 were selected with E-value < 0.01 by searches of Conserved
Domain Database [35] using rpsBLAST. The multiple sequence alignment was performed in MAFFT using accurate
algorithm L-INS-i with 1000 cycles of iterative refinement [36]. The alignment was edited manually in JalView [37].
The set of 1292 amino acid sequences from various prokaryotic lineages was used to infer the global phylogenetic
relationships between HmuY and Tfo homologs. In addition, all 369 sequences classified into Bacteroidia group were
extracted and aligned using accurate algorithm T-Coffee combining sequence information with protein structures
and profiles [38].

Phylogenetic trees were inferred using the Bayesian approach in MrBayes [39] and PhyloBayes [40], as well as
maximum likelihood method in IQ-TREE [41] and morePhyML [42] based on PhyML [43].

In MrBayes analyses, we applied mixed+I+�(5) models and two independent runs, each using 72 or 8 Markov
chains (for the global and Bacteroidia sets, respectively). The trees were sampled every 100 generations for 20000000
generations. In the final analysis, we selected the last 110421 to 45431 trees, that reached the stationary phase and
convergence.

In the PhyloBayes analysis, the convergence was reached only for the Bacteroidia set. Therefore, results only for this
set were presented. In this case, the WAG+�(5) model was applied as proposed in ProtTest [44]. Two independent
Markov chains were run for 100000 generations with one tree sampled for each generation. The last 25000 trees from
each chain were collected to compute posterior consensus trees.

The tree calculated with (more)PhyML was based on the LG+�(5) or WAG+I+�(5) models, as found in ProtTest,
for the global and Bacteroidia sets, respectively. We applied the best search algorithm NNI+SPR. In IQ-TREE, we
used LG+R8 or WAG+R7 models for the global and Bacteroidia sets, respectively, as suggested by ModelFinder [45].
To assess significance of branches, we performed a non-parametric bootstrap analysis on 100 or 1000 replicates and
the approximate likelihood ratio test (aLRT) [46] assuming 1000 or 10000 replicates in IQ-TREE, for the global and
Bacteroidia sets, respectively.

Accession numbers
The structures of apo-HmuY (PDB ID: 6EWM) and apo-Tfo (PDB ID: 6EU8) were deposited at http://www.rcsb.org/
structure/6EWM and http://www.rcsb.org/structure/6EU8, respectively.
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Results
Phylogenetic analysis of HmuY and Tfo homologs
Database searches resulted in 3540 potential distant homologs to P. gingivalis HmuY and T. forsythia Tfo. Despite
a quite large divergence, it was possible to align the sequences, select conserved regions and infer phylogenetic rela-
tionships (Supplementary Figures S1 and S2). Majority of HmuY and Tfo homologs belong to phylum Bacteroidetes
and related phyla. We also found homologs in many Spirochetes but not in T. denticola.

Eleven main groups can be recognized in the phylogenetic tree (Supplementary Figure S1). P. gingivalis HmuY
and T. forsythia Tfo are placed within the G3 clade amongst other Bacteroidia sequences, which are also distributed
into G1 and G5. Other clades include representatives of other bacterial groups. However, sequences assigned to a
given phylum or class, e.g. those from Bacteroidetes, are not always clustered together but are separated into different
clades. Such distribution suggests that ancestral hmuY genes were subjected to duplications before divergence of the
main Bacteroidetes lineages. Alternatively, horizontal gene transfers could occur between these lineages. More clear
horizontal gene transfers probably occurred between members of different phyla.

P. gingivalis HmuY and T. forsythia Tfo are separated into different clades of class Bacteroidia and are not close
homologs (Figure 1 and Supplementary Figure S3). Many sequences from Porphyromonas do not form a mono-
phyletic clade either but are distributed into six clades separated by other genera from the Bacteroidia. Tannerella
sequences are also separated into two unrelated clades. Such distribution implies that the genes encoding the HmuY
and Tfo homologs were duplicated before differentiation of Bacteroidia into the current genera and various copies
were maintained in the individual lineages.

Organization of hmu operons
Genetic organization and amino acid sequences of products of respective genes located in the hmu operon, which is a
potential counterpart of a typical hem operon found in other bacteria [47,48], are different in P. gingivalis and other
Bacteroidetes members (Figure 2). Interestingly, the T. forsythia hmu-like operon possesses an additional HmuR
homolog. The first TonB-dependent outer-membrane receptor in this operon (Tanf RS09475) is less similar to the
P. gingivalis HmuR (PGA7 RS02050) (Supplementary Figure S4) because it lacks two His residues engaged in heme
coordination in HmuR and other typical heme TonB-dependent outer-membrane receptors [11]. Instead, Tyr and
Met residues are present in homologous positions and their close neighborhood. The second gene encoding HmuR
homolog in this operon (Tanf RS09470) is very similar to the P. gingivalis HmuR (Supplementary Figure S4), sug-
gesting the possibility of a heme transport function.

Sequence conservation of HmuY and Tfo homologs
Conserved regions from HmuY homologs are distributed along the whole sequence but do not include two His
residues coordinating heme in P. gingivalis HmuY (Supplementary Figure S5). However, it is possible to find other
residues conserved in all or majority of sequence phylogenetic groups, which are probably involved in formation of
structures or folds, which apparently did not change during evolution. On the other hand, each or only few groups
have the residues that are uniquely conserved only in them, which may be important in some functional or structural
differentiation of proteins in individual groups of homologs.

Since the two His residues coordinating heme in P. gingivalis HmuY were not conserved across large evolutionary
distances, we focussed on the homologs from the Porphyromonas and Tannerella to study the conservation in ho-
mologs within the same genera. The His residues found in P. gingivalis HmuY are generally poorly conserved in the
majority of sequences (Figure 3). However, there are some sequences which preserve these residues in the homolo-
gous positions. Besides P. gingivalis (placed in clade C5), the first His residue is also found in other Porphyromonas
species (Figure 4), whereas the second His residue is much less conserved. Nevertheless, besides His, other residues
(Met, Cys, Tyr, Lys) can also serve as axial ligands to the heme iron [49]. Met or Lys were found in the homologous
position to the first His in sequences from the distantly related C2, C3, and C7 clades, whereas Met or Lys homologous
to the second His are present in the representatives of clades C3, C4, and C6.

Besides T. forsythia sequence (WP 060827954.1, 146) (Figure 3), other representatives of this genus do not have
residues appropriate for heme binding in the positions homologous to the His residues. However, in the distance of
only six alignment sites from the first His and three sites from the second His, there are Met residues, being good can-
didates for heme coordination. The first Met (Figure 3) is present in almost all Tannerella of clade C8 and also various
Porphyromonas sequences distributed into clades C4, C5, C6, and C9 (Figure 4). The sequences from Tannerella
belonging to clade C1 has Tyr in the homologous position similar to three Porphyromonas sequences. Interestingly,
Porphyromonas sp. (WP 044125400.1, 241) has a His residue in this position. The second Met is conserved in all
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Figure 1. The phylogenetic tree obtained in MrBayes for the HmuY homologs in Bacteroidia

Lineages of main genera are marked in different colors. Nine clusters including Porphyromonas and Tannerella are indicated. P.

gingivalis HmuY (Pg) and T. forsythia Tfo (Tf) are shown in bold. The full tree with support values obtained by various methods is

presented in Supplementary Figure S3.

Tannerella in clade C8 and in some Porphyromonas sequences in clades C3, C5, and C6. The sequence from P. levii
in the C7 clade has a His residue in the vicinity of this site, which can be easily aligned with the Met residues. These
results suggest that in the neighborhood of HmuY histidines there are a number of potential residues that can co-
ordinate heme in many Porphyromonas and Tannerella. The distribution of the considered residues in sequences
grouped in the phylogenetic tree (Figure 4) implies that the His and Met residues could be also present in ancestors
of the C5 and C8 clades.

Tfo binds heme but in a manner different from HmuY
The comparative analyses of HmuY homologs suggest that not only the HmuY hemophore-like protein of P. gingi-
valis, but also T. forsythia Tfo may be engaged in heme acquisition. Compared with HmuY, which exhibited a Soret
λmax in the 411 nm region [14], the Soret maximum determined for Tfo was at 398 nm (Figure 5A). In addition,
compared with the HmuY Q band maxima at 528 and 558 nm [14], those for Tfo were located at 529, 565, and 607
nm. These results were corroborated by difference spectrum analysis, although slightly different values of absorbance
maxima were observed (Figure 5B).
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Figure 2. Schematic presentation of genes encoding HmuY homologs

P. gingivalis HmuY and its homologs in T. forsythia (Tfo), Bacteroides fragilis and Bacteroides vulgatus (shown in red) and other

genes identified in the P. gingivalis hmu and hmu-like operons (shown in gray) are shown. The gene marked in black does not

exhibit homology to the gene encoding PGA7 RS02040 (putative ATPase) in P. gingivalis. Genes marked with open arrows do

not exist in all bacteria presented here. The gene marked in gray diagonal stripes encodes a TonB-dependent outer-membrane

receptor, which is less homologous to P. gingivalis HmuR.

Compared with the HmuY protein, which after overexpression, purification, and concentration existed un-
der air (oxidizing) conditions in solution as red-colored complex, Tfo gave a green-color, which was visible as a
brown-colored complex after heme titration (Figure 6A). After reduction, the Tfo-heme solution gave a red-colored
complex, highly similar to HmuY–heme solution (Figure 6A). The Soret peak maximum of Tfo red shifted and a single
peak emerged at 426 nm, compared with 424 nm for HmuY (Figure 6B). Moreover, reduction produced increased and
well-resolved Q bands at wavelengths almost identical with those observed for HmuY, suggesting a hexa-coordinate
low-spin Fe(II)heme in Tfo. The heme bound to Tfo was further re-oxidized, resulting in the Soret band shift back to
397 nm, compared with 411 for HmuY.

The CD spectra of Tfo determined in the visible region under oxidizing conditions differed from those observed
for HmuY (Figure 7A). The main feature was the lack of a negative Cotton effect in the ferric heme form. Reduction
in Tfo resulted in the minimum similar to HmuY (Figure 7A). Further, the resulting MCD spectra (Figure 7B,C)
were compared with data obtained for other hemoproteins. However, based on our results we were unable to find an
accurate match for the heme coordination chemistry in Tfo–Fe(III)heme complex. In contrast, the spectra recorded
under reducing conditions are similar to those observed in hemoproteins with hexa-coordinate, low-spin heme.

Previously, using UV-visible spectroscopy with a single beam spectrophotometer [19,50], we estimated the Kd of
heme binding under oxidizing conditions to the HmuY protein to be approximately 0.25 × 10−8 M. Here we carried
out a more thorough analysis using a double-beam instrument and found that HmuY binds heme with Kd value <

10−9 M (Figure 5C). This tendency was preserved under reducing conditions (Figure 5C). Compared with HmuY,
Tfo-bound heme with lower ability under oxidizing conditions. However, reduction resulted in significantly higher
heme-binding ability to Tfo, comparable or even slightly higher with that observed for HmuY. Similar to HmuY, heme
binding to Tfo did not cause significant changes in the secondary structure of the protein, as determined by far-UV
CD analysis (data not shown).
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Figure 3. Amino acid sequence alignment of Porphyromonas and Tannerella sequences that are homologous to HmuY and

Tfo

Nine clusters indicated in Figure 1 are shown to the left of sequence names. Histidine and methionine residues coordinating heme

in P. gingivalis HmuY and T. forsythia Tfo, respectively, are marked by red boxes.
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Figure 4. Extracted clades C5 and C8 including the closest homologs to P. gingivalis HmuY and T. forsythia Tfo, respectively

Amino acid residues aligned at the homologous positions to the HmuY histidine residues coordinating heme are shown at sequence

names in clade C5, whereas residues corresponding to Tfo methionine residues are shown in clade C8. The values at nodes indicate

in the following order: posterior probabilities found in MrBayes and PhyloBayes as well as support values calculated by aLRT

based on a Shimodaira–Hasegawa-like procedure and non-parametric bootstrap calculated both in (more)PhyML and IQ-TREE.

The posterior probabilities <0.5 and the percentages < 50% are omitted or indicated by a dash ‘-’.

Tfo exists as monomers and is more susceptible to proteolysis than HmuY
In contrast with HmuY, which was shown to form a dimer even after SDS/PAGE, Tfo usually migrated during elec-
trophoresis as a single band (Supplementary Figure S6A). Cross-linking studies revealed a similar pattern observed
for HmuY and Tfo (Supplementary Figure S6A). Size-exclusion chromatography showed that both apo- and holo-Tfo
existed under oxidizing conditions in a monomeric form, whereas holo-HmuY exhibited a tendency to form, in part,
a dimer (Supplementary Figure S6B). Under reducing conditions, only holo-Tfo migrated, in part, as a dimer.

Previously, we demonstrated that P. gingivalis HmuY is completely resistant to several proteases [15,22,51]. In
contrast with those findings, we showed that Tfo was more susceptible to trypsin digestion (Figure 8A). Our obser-
vations were further corroborated by experiments demonstrating P. gingivalis or T. forsythia growth in the presence
of added purified HmuY or Tfo proteins. In contrast with HmuY, which was completely resistant during P. gingivalis
growth, Tfo was digested by P. gingivalis proteases, whereas proteases produced by T. forsythia were not able to
digest both proteins (Figure 8B–D).

Tfo sequesters heme from albumin–heme complex under reducing
conditions
One of the hypothesized functions of Tfo, similar to P. gingivalis HmuY, would be to gain heme in an environment
where heme levels are tightly restricted by host heme-sequestering proteins. Our studies clearly demonstrated that
P. gingivalis HmuY efficiently extracted heme from methemoglobin, albumin–heme [21,22], and hemopexin–heme

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. Heme titration experiments of P. gingivalis HmuY and T. forsythia Tfo

UV-visible absorption (A) and difference (B) spectra of HmuY and Tfo recorded after titration of proteins (10 μM) with heme are

shown. (C) The curves were generated after titration of 5 μM protein samples with heme by measuring the difference spectra

between the protein+heme and heme-only samples. Samples were examined under air (oxidizing) conditions (black) or reduced by

sodium dithionite (red). Results are shown as mean +− S.D. from three independent experiments.

complexes (Supplementary Figure S7). Here we found that Tfo was not able to sequester heme present in methe-
moglobin or bound to albumin or hemopexin when in the Fe(III)heme form (data not shown). However, we observed
that Tfo extracted heme from the albumin–heme complex but only under reducing conditions (Figure 9), although
complexation of Fe(II)heme bound to hemopexin was not demonstrated (data not shown). To analyze possible syn-
trophy between P. gingivalis and T. forsythia, we examined the interactions between apo-HmuY and holo-form of
Tfo and showed that HmuY efficiently sequestered Fe(III)heme which had been complexed to Tfo (Supplementary
Figure S8).

3D structure of apo-HmuY
To further characterize P. gingivalis HmuY, we successfully solved its 3D structure in apo-form. The structure
of apo-HmuY (PDB ID: 6EWM) was determined by molecular replacement starting from the holo-HmuY model
(PDB ID: 3H8T) (Supplementary Table S2). Compared with holo-HmuY [15], one can see the opening up of the
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Figure 6. Analysis of heme binding to purified P. gingivalis HmuY and T. forsythia Tfo under different redox conditions

examined by UV-visible spectroscopy

(A) Colors of 150 μM HmuY and Tfo proteins complexed with heme (protein:heme ratio 1:1) in PBS are shown. (B,C) UV-visible

absorption spectra of HmuY–heme and Tfo–heme complexes are presented. Samples (10 μM proteins) in complex with heme

were examined under air (oxidizing) conditions and subsequently reduced by sodium dithionite, and re-oxidized by potassium

ferricyanide.

heme-binding pocket in the apo-form (Figure 10). The loop containing the axial heme ligand, His166, has moved
significantly and the His166 side chain faces the surface of the apo-protein (the His166NE2 atom is shifted from the
heme by approximately 16 Å). This loop must close up when the heme group enters the pocket. The opening up of
the heme-binding pocket observed in the crystal structure of apo-protein (Figure 10) was reproduced by MD (Sup-
plementary Figure S9).

3D structure of Tfo
The structure of apo-Tfo (PDB ID: 6EU8) was determined in space group P321 to a resolution of 1.47 Å, with two
molecules in the asymmetric unit and final R/R-free of 18.4/21.9% (Supplementary Table S2). Analysis of Tfo structure
using the PDBePISA server [52] suggested that the two molecules do not form a biologically significant dimer. The
topology of the primarily β-sheet secondary structure of the protein shows a series of antiparallel β-strands in five
groups. Similar to apo-HmuY (Figure 11A), apo-Tfo exhibited topology typical of all-β strand structure, with the
main distinction apparent in the fold forming the heme-binding pocket, where two long β-strands in HmuY that
form one side of the pocket are replaced in Tfo by four shorter β-strands (Figure 11B). Figures 12 and 13 show the
HmuY heme-binding pocket and the corresponding region in Tfo. The binding pocket in the apo-Tfo crystal structure
was occupied by a malonate molecule from the crystallization medium, which was bound by hydrogen bonds to
Gly150, Arg75, and Lys184 residues (numbering of amino acid residues according to the protein lacking the signal
peptide sequence, crystallized, and examined by X-ray analysis). Similar residues were involved in the binding of an
unknown ligand to the HmuY-like heme-binding protein from Bacteroides vulgatus ATCC 8482 (BVU 2192; PDB
ID: 3U22). The hydrogen bonding between malonate and these residues restricted movement of the loops covering the
binding pocket, resulting in the closed conformation. In contrast, the homologous protein from Bacteroides fragilis
(BF9343 2622; PDB ID: 4GBS) did not possess such a bound ligand. All-atom MD, similar in procedure to those

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

11



Bioscience Reports (2018) 38 BSR20181325
https://doi.org/10.1042/BSR20181325

Figure 7. Analysis of heme binding to purified P. gingivalis HmuY and T. forsythia Tfo under different redox conditions

Heme binding was monitored in the visible region by CD (A) and MCD (B,C) spectroscopies. Samples were examined under air

(oxidizing) conditions (A,B) and subsequently reduced by sodium dithionite (A,C).

validated using HmuY, showed that enlargement of the pocket opening is possible in the absence of malonate. The
resulting open conformation would presumably then allow for the heme group to be accommodated in the pocket in
holo-Tfo (Figure 14). Tfo lacks the two His residues that are required for axial ligation of the heme in HmuY. Instead,
Met, Lys, and Tyr residues are potentially available for binding the heme. Based on spectroscopic studies, we assumed
that two methionine residues are the best candidates. This assumption was also made based on the phylogenetic
analyses and comparison of the HmuY and Tfo 3D structures. However, to date we do not have structure of the
holo-Tfo, as 1.8 Å data collected from brown holo-Tfo crystals only reveal presence of the apo-form of the protein.
Anaerobic crystallization and protein storage may be needed to preserve heme in the binding pocket.

T. forsythia expresses Tfo under low-iron/heme conditions
The HmuY protein is associated with both the bacterial outer membrane and OMVs through a lipid anchor [18,53],
and can also be shed as an intact, soluble protein as a result of the limited proteolytic processing by P. gingivalis
lysine-specific gingipain K (Kgp) [15,18]. P. gingivalis produces higher levels of HmuY when the bacterium grows
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License 4.0 (CC BY).



Bioscience Reports (2018) 38 BSR20181325
https://doi.org/10.1042/BSR20181325

Figure 8. Proteolytic susceptibility of P. gingivalis HmuY and T. forsythia Tfo

(A) Both proteins in apo- and holo-forms in their native states (native) and after thermal denaturation (denatured) were subjected to

trypsin digestion and visualized by staining with CBB G-250. Susceptibility of proteins to P. gingivalis (B) or T. forsythia (C) proteases

was examined by growing bacterial cells under high- (Hm) or low-iron/heme (DIP) conditions in the presence of the purified HmuY

or Tfo proteins (marked with asterisks). Protein samples collected at indicated time points were separated by SDS/PAGE and

visualized by staining with CBB G-250 (B). (D) The presence of Tfo in P. gingivalis cultures was also examined by Western blotting

using rabbit polyclonal anti-Tfo antibodies.

under low-iron/heme conditions or as a biofilm constituent [13,18], as well as intracellularly in host cells [54]. Similar
to hmuY mRNA and HmuY protein, both tfo transcript (Figure 15A) and Tfo protein (Figure 15B) were produced
at higher levels in bacteria grown under low-iron/heme conditions, as compared with high-iron/heme conditions.
Distribution pattern of the Tfo protein between whole T. forsythia cells, OMVs, and culture medium containing
soluble protein shed from the outer membrane was also similar, as compared with P. gingivalis HmuY (Figure 15B).

Discussion
P. gingivalis and T. forsythia have been indicated as species prevalent in consortia within subgingival pockets as-
sociated with chronic periodontitis [4,5]. P. gingivalis surface-exposed proteins, proteins associated with OMVs, or
secreted proteins are crucial for its own virulence and effective invasion of host cells [2,53-56]. Moreover, P. gingi-
valis virulence factors are important for adherence to and aggregation with other oral bacteria, including T. forsythia
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Figure 9. Sequestration of heme by T. forsythia Tfo from human albumin complexed with Fe(II)heme

Samples were examined by UV-visible spectroscopy under reducing conditions formed by addition of sodium dithionite.

Figure 10. The structures of the P. gingivalis holo- and apo-HmuY monomers

In the apo-protein (yellow), the loop containing the axial heme ligand His166 is no longer constrained by binding to the heme group

and adopts a new position, rotating and reorienting the His166 side chain externally toward the surface of the protein. This results

in an opening up of the heme-binding pocket compared with the holo-protein (pink; PDB ID: 3H8T). A smaller shift away from

the heme-binding site occurs for the β-strand containing the axial ligand His134. This part of the structure is more rigid. The rms

difference in the two aligned structures is 1.8 Å, calculated for 179 residues using the cealign command in PyMol (The PyMOL

Molecular Graphics System, version 1.8 Schrödinger, LLC).

[57-58], which in turn exhibits a growth-promoting effect toward P. gingivalis [59]. All these findings suggest the syn-
ergistic virulence potential and ecological relationship of P. gingivalis and T. forsythia [55,57-60]. We hypothesize
that other oral bacteria, especially those classified as the ‘red complex’, might utilize similar proteins to acquire heme
and increase their virulence. Compared with E. coli, which predominantly expresses porins in the outer membrane
to acquire nutrients [61], members of Bacteroidetes phylum possess a different outer membrane architecture, rich in
lipoproteins. Amongst them are P. gingivalis HmuY (PGA7 RS02055), three B. fragilis NCTC 9343 (BF9343 0985,
BF9343 2078, BF9343 2622), and one B. vulgatus (BVU RS11035) potential HmuY homologs, as well as T. forsythia
Tfo (Tanf RS09480). The majority of lipoproteins are cell surface-exposed and could be released into the environment,
including P. gingivalis HmuY [18,53], T. forsythia Tfo [62,63], and B. fragilis HmuY homologs [64]. In addition,
many genes encoding lipoproteins are adjacent to genes encoding TonB-dependent outer membrane receptors and
likely promote the nutrient acquisition, including internalization of heme.
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Figure 11. Topological schemes for P. gingivalis HmuY and T. forsythia Tfo

Comparison of P. gingivalis HmuY (A) and T. forsythia Tfo (B) showed that the main difference lies in the region of the structure

known to bind the heme moiety in HmuY.

Figure 12. Cartoon representations of the aligned structures of apo-HmuY (yellow) and apo-Tfo (green) monomers

A malonate molecule from the crystallization medium is present in the heme-binding pocket of apo-Tfo. The two His residues that

bind as axial ligands to the heme group in holo-HmuY, and the Met residues occupying equivalent structural locations in Tfo, are

shown as sticks. The rms difference in the two aligned structures is 3.5 Å, calculated for 160 residues using the cealign command

in PyMol (The PyMOL Molecular Graphics System, version 1.8 Schrödinger, LLC).

Our previous work on P. gingivalis extensively characterized a novel, unique hmu heme acquisition mechanism,
requiring the HmuY protein. We demonstrated that P. gingivalis HmuY not only binds free heme, but can wrest heme
from methemoglobin directly [21] and thus functions similar to typical secreted hemophores, which are engaged in
heme transfer from the host hemoproteins to the outer membrane receptors [65,66]. HmuY is also able to compete
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Figure 13. Close-up of the heme-binding pocket in P. gingivalis holo-HmuY (A) and the equivalent site in T. forsythia apo-Tfo

(B)

The Tfo site lacks the His residues that are the axial ligands to the Fe-heme in HmuY. The binding pocket is narrower in the apo-Tfo

crystal structure, with a malonate ligand (MLI) and the Met149 in positions occupied by the heme in HmuY. The malonate forms

H-bonds (2.8-3.1 Å, indicated by dashed lines) to residues Gly150, Arg75, and Lys184 and to water molecules (not shown). Numbering

of amino acid residues in the case of Tfo is shown according to the protein lacking the signal peptide sequence (20 amino acid

residues), which was crystallized and examined by X-ray analysis.

Figure 14. Molecular dynamics of T. forsythia apo-Tfo

(A) shows the variation in the distance between Met120 and Met149 SD atoms during 8 ns of an all-atom MD, beginning with the

equilibrated crystal structure data. (B) shows the initial structure (green) and the simulated structure after 8 ns (red). The opening up

of the potential heme-binding pocket by approximately 10 Å is largely due to the movement of the loop containing Met149. The rms

difference between the initial and MD simulated structures is 2.2 Å. Numbering of amino acid residues in the case of Tfo is shown

according to the protein lacking the signal peptide sequence (20 amino acid residues), which was crystallized and examined by

X-ray analysis.
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Figure 15. Expression of P. gingivalis HmuY and T. forsythia Tfo during bacterial growth

(A) Relative changes in levels of transcripts in bacteria grown under low- compared with high-iron/heme conditions at indicated

time points at the first (I) and second (II) passage as determined by RT-qPCR are shown. (B) Bacteria were grown in liquid culture

media under high- (Hm) or low-iron/heme (DIP) conditions for 24 h and both whole cultures and bacterial cells were subjected to

centrifugation and/or ultracentrifugation. To enable visualization of the soluble HmuY and Tfo by immunoblotting, the culture media

were concentrated 25× by ultrafiltration. Abbreviations: OMV, outer membrane vesicles; SP, soluble protein shed from bacterial

outer membrane; WC, whole bacterial cell.

with albumin [21], which is the normal front-line heme scavenger in vivo, as well as acquiring heme from serum
hemopexin (the present study). Importantly, we demonstrated here that heme may also be sequestered under air
conditions by HmuY from Tfo–heme complex. We suggest that heme bound to Tfo might represent a heme reservoir
for P. gingivalis, which could be accessed by the action of HmuY during phases of colonization when T. forsythia
dominates over P. gingivalis.

To shed more light on the heme-binding mechanism displayed by P. gingivalis HmuY, we successfully crystal-
lized the protein in apo-form. We experimentally verified that heme binding was accompanied by a movement of
the loop carrying the His166 residue. As compared with apo-HmuY, analysis of the 3D structure of apo-Tfo con-
firmed differences revealed by spectroscopic analyses, mainly in the fold forming the heme-binding pocket and the
lack of two His residues coordinating heme in HmuY. Our spectroscopic data did not exclude the possibility that
Met residues might coordinate heme. Importantly, they demonstrated that heme can be bound to Tfo efficiently un-
der reducing conditions, which favors coordination through Met residues. Although the apo-Tfo structure exhibited
a ‘closed’ form, partly caused by malonate binding, MD showed that it could open up to accommodate the heme.
Comparison of apo-HmuY with apo-Tfo showed the same kind of opening of this region and it is the ‘same’ loop,
containing Met149 (Met169 according to the numbering of amino acid residues in the full length protein) that moves
significantly compared with the crystal structure of the closed conformation of apo-Tfo. It has been shown that clas-
sical hemophores from Serratia marcescens [67,68] and Pseudomonas aeruginosa [69-71] also exhibit structural
rearrangements upon heme binding to His32 and Tyr75, which allows for both heme pick up and subsequent release
for transfer to the outer membrane heme-binding receptors. However, a recent study demonstrated that His32 is not
conserved in all secreted hemophores. For example, HasA from Yersinia pestis and Yersinia pseudotuberculosis
coordinate heme by employing a single Tyr75, and that the structures of the proteins in both apo- and holo-forms
are quite similar [72-74]. Analogously, we suspected that Tfo might use only one Met residue to coordinate heme.
However, our data suggested that Tfo might coordinate Fe(II)heme through Met120 and Met149 residues (Met140 and
Met169 according to numbering of amino acid residues in the full length protein). An example of bacterial protein
coordinating heme using two Met residues, Met66 and Met153, is the Streptococcus pyogenes surface protein (Shp),
which transfers heme to HtsA, the lipoprotein component of HtsABC (ABC transporter of Gram-positive bacteria)
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[75]. In contrast with Shp, which binds heme under both oxidizing and reducing conditions, Tfo requires reducing
conditions for efficient heme binding. Similar to Shp [76], Tfo does not sequester heme from methemoglobin.

It is not surprising that progression of chronic periodontitis correlates with the formation of periodontal pockets,
which is associated with decrease in oxidation-reduction potential (Eh) and a reduced environment preferred by
anaerobic bacteria [77,78]. Since P. gingivalis and T. forsythia reside in periodontal pockets as components of a
‘red complex’, one would expect that they would both require similar conditions for growth. However, it is worth
noting that the early periodontal pathogenesis in the gingival pocket is characterized by reducing conditions but not
yet typified by bleeding. Under these conditions the main heme source will be albumin before hemoglobin enters
from bleeds. If T. forsythia can flourish in this early environment, when P. gingivalis is not yet dominant, then any
heme capture from albumin (reduced) becomes a more important part of a bacterial pool for future access by other
hemophore-like proteins, such as HmuY. It is noteworthy that the affinity of albumin for Fe(II)heme is lower than
for heme in the Fe(III) state [79,80] and that this may facilitate heme capture by Tfo. Moreover, reduced conditions
influence properties of iron coordination to methionine more significantly than to histidine, thus allowing efficient
heme binding also to Tfo and heme sequestration from the albumin-Fe(II)heme complex by Tfo. This effect could
be explained by bis-Met heme ligation in Tfo, which results in stabilization of the reduced state as compared with
bis-His ligation in HmuY [81]. As compared with bis-His ligation employing nitrogen atoms, stabilization of the
reduced state of the protein by bis-Met ligation occurs since coordination of two methionyl sulphur atoms, serving as
good electron acceptors, results in rise of the redox potential [82]. Based on the theory of hard and soft acids and bases
[83,84], one may hypothesize that under oxidizing conditions bis-Met ligand binding is destabilized. In this context,
HmuY may be important for effective heme acquisition in a heme-limited environment, especially in a polymicrobial
plaque biofilm community and within host cells, especially under air conditions.

In conclusion, our data presented here on further characterization of HmuY as well as new findings on T. forsythia
Tfo not only shed more light on the molecular bases of the novel mechanism of heme uptake of ‘red complex’ members
but also add to characterization of proteins composing this novel family of hemophore-like proteins.
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