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Abstract

Background: The standard genetic code (SGC) is a unique set of rules which assign amino acids to codons. Similar
amino acids tend to have similar codons indicating that the code evolved to minimize the costs of amino acid
replacements in proteins, caused by mutations or translational errors. However, if such optimization in fact occurred,
many different properties of amino acids must have been taken into account during the code evolution. Therefore, this
problem can be reformulated as a multi-objective optimization task, in which the selection constraints are represented
by measures based on various amino acid properties.

Results: To study the optimality of the SGC we applied a multi-objective evolutionary algorithm and we used the
representatives of eight clusters, which grouped over 500 indices describing various physicochemical properties of
amino acids. Thanks to that we avoided an arbitrary choice of amino acid features as optimization criteria. As a
consequence, we were able to conduct a more general study on the properties of the SGC than the ones presented so
far in other papers on this topic. We considered two models of the genetic code, one preserving the characteristic
codon blocks structure of the SGC and the other without this restriction. The results revealed that the SGC could be
significantly improved in terms of error minimization, hereby it is not fully optimized. Its structure differs significantly
from the structure of the codes optimized to minimize the costs of amino acid replacements. On the other hand, using
newly defined quality measures that placed the SGC in the global space of theoretical genetic codes, we showed that
the SGC is definitely closer to the codes that minimize the costs of amino acids replacements than those maximizing
them.

Conclusions: The standard genetic code represents most likely only partially optimized systems, which emerged under
the influence of many different factors. Our findings can be useful to researchers involved in modifying the genetic
code of the living organisms and designing artificial ones.
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Background
The standard genetic code (SGC) describes how 64
possible codons encode 20 amino acids and the stop
translation signal. This fundamental discovery [1, 2]
explained how the genetic information stored in the
DNA molecule can be transmitted to the protein
world. The specific properties of the code, e.g. that
similar amino acids tend to have similar codons
assigned [3], inspired many scientists to formulate

various hypotheses concerning its origin and evolu-
tion [4–7], such as: (i) the stereochemical hypothesis,
(ii) the coevolution hypothesis, and (iii) the adaptive
hypothesis. These hypotheses indicate different factors
as the main forces responsible for the present struc-
ture of the SGC, although it is not inconceivable that
all these factors played main roles at different stages
of the standard genetic code evolution [6].
The stereochemical hypothesis postulates that a high

affinity between amino acids and their codons/anti-co-
dons or other nucleotide aptamers and oligomers had a
decisive impact on the SGC structure [8–13]. The main
argument against this explanation lies in the fact that
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such interactions have been found only in very few cases.
Because of the lack of strong experimental evidence this
hypothesis cannot be considered the basic explanation
for the structure and evolution of the SGC. The coevolu-
tion hypothesis claims that the present structure of the
SGC is a reflection of the expansion of prebiotic path-
ways for the biosynthesis of amino acids [14–21].
According to this scenario, the SGC evolved from its an-
cestral form, which encoded only a small number of
amino acids produced by simple biochemical reactions.
In the consecutive evolutionary stages other amino acids
were incorporated into the code simultaneously with the
evolution of more complex metabolic networks.
The adaptive hypothesis has become quite popular

since its formulation [22, 23]. It claims that the structure
of the SGC evolved to minimize the effects of amino
acid replacements resulting from mutations or transla-
tional errors. This concept was investigated by many re-
searchers using many methodologies [24–41]. The main
argument for this scenario follows directly from the
observed tendency in the SGC of amino acids with simi-
lar properties to be located in a close vicinity in the
genetic code table and to differ usually by only one sub-
stitution in their codons. For example, hydrophobic
amino acids are usually encoded by codons with uracil
in the second position and hydrophilic amino acids by
those with adenine in this position.
To test the adaptive hypothesis, many researchers used

various approaches and constructed many models to deal
with the extremely huge number of possible theoretical
genetic codes. Given 64 codons and 20 amino acids with
the stop translation signal, there are 2164 ≈ 4 · 1084 varia-
tions with repetition of 21 elements taken 64 at a time, i.e.
64-tuples of 21-set. Assuming that each code has to
encode each out of 21 items, this number is only slightly
smaller 1.51 · 1084 [42]. If we accept a model of the SGC
evolution involving two sets of 32 complementary triplets,
where each set coded for 10 amino acids, we will still have
a very large number of possible codes: 1032 · 1032 = 1064

[43]. These astronomical numbers of the codes can be
reduced only by assuming the evolution of the SGC from
the primeval RNY code and the inclusion of specific
features: the degeneracy, the wobbling rule, the assign-
ments of aminoacyl-tRNA synthetases to amino acids, the
assumption that glycine was the first amino acid, as well
as the topological and symmetrical properties [43].
To assess the optimality of the SGC, a comparison

with randomly generated theoretical codes was usually
performed [24–27, 44]. However, this classic approach
seems to be inefficient because even 1 · 106 random
codes make only a very small fraction of all possibil-
ities and do not have to be representative for the
whole space of theoretical codes. Therefore, genetic
and evolutionary algorithms, which try to find the

best possible codes under given criteria and compare
them with the SGC, seem more suitable for this
problem [37, 41, 45–52].
Another important issue in the investigation of the

SGC optimality is the choice of amino acid properties,
which has to capture the most crucial features for
peptides synthetized when the genetic code was emer-
ging. The selection of such properties is not an easy task.
Obviously, the optimality cannot be studied in regard to
amino acid substitution matrices, commonly used in
phylogenetic analyses and sequence alignments, e.g.
PAM and BLOSUM matrices, because they include the
substitutions that were already selected by the genetic
code structure, which makes such analyses tautologous
[53]. In agreement with the fact that such types of matri-
ces include not only a component depending on pairwise
amino acid similarities but also one resulting from
mutability of amino acids [54], which may reflect just
the genetic code structure. Physicochemical properties
most commonly tested in the SGC optimality are:
hydropathy, isoelectric point, molecular volume and
polarity [24, 37, 47, 50, 55, 56]. The last one provided
the most significant evidence for the error minimization
property of the SGC and was used in further analyses by
many researchers. However, this and other mentioned
properties are only a small sample of all possible charac-
teristics which can be used to describe amino acids.
Most probably, many features of amino acids influenced
the evolution of the SGC, not just as single factors, but
rather as a system of interconnected elements.
Therefore, studying the potential optimality of the

SGC as a multi-objective optimization problem and
using evolutionary algorithms seems to be a proper
approach. Thanks to that, we were able not only to
answer the question about the optimization properties
of the SGC but also to detect amino acid features that
could have had an impact on the SGC structure. More-
over, in order to assess the level of optimality of the
SGC in terms of robustness to amino acid replacements,
we decided to find not only the codes minimizing but
also those maximizing the costs of amino acid replace-
ments, to avoid comparing the SGC with randomly
generated codes. We searched for the optimal codes in
two groups of codes, one containing the codes with the
same codon block structure as the SGC, and the other
with codes without such restrictions. As a search
method we applied a customized version of the Strength
Pareto Evolutionary Algorithm, which is popular and
widely used in various optimization problems [57].
We subjected to optimization the costs of all possible

changes from one amino acid to another caused by
single-point mutations in codons. Such costs can be
described by differences in physicochemical and biochem-
ical properties of amino acids. However, there are over 500
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amino acid indices quantifying such properties collected in
the AAindex database [58], which makes it difficult to
choose the most significant, non-redundant and inform-
ative ones for given analyses. A good way to overcome
these problems is to look for a clustering of these indices in
terms of their similarities and to select the most representa-
tive index for each cluster. The recent classification of such
indices was made by [59] using a consensus fuzzy clustering
method. Thus we applied eight amino acid indices repre-
senting various amino acid properties obtained by this
method to assess the costs of amino acid replacements.
Besides the eight-objective optimization, we also carried
out single-objective optimizations of all the considered
criteria separately, for comparison. The results of this
approach showed that it is justifiable to use the multi-ob-
jective algorithm because it provides much more informa-
tion about the features and the structure of the genetic
code than the single-objective optimization method.

Methods
Models of genetic codes
We considered two models of genetic codes. The first
one, the block structure model (BS), preserves the char-
acteristic codon block structure of the standard genetic
code and simply permutes the assignments of amino
acids between these codon blocks in order to create a
new genetic code. The second one, the unrestricted
structure model (US), randomly divides 61 sense codons
into 20 non-overlapping sets corresponding to 20 stand-
ard amino acids, with the assumption that each of these
sets is not empty. In both models, the codons assigned
to the stop translation signal stay the same as in the
SGC for all newly created genetic codes.

Multi-objective evolutionary algorithms
In order to find the optimized genetic codes, we decided
to apply one of the multi-objective evolutionary algo-
rithms (MOEAs). They are widely used in solving
optimization problems because of their many advan-
tages, such as simplicity, flexibility and robustness to
changing conditions [60]. These algorithms are espe-
cially useful in the cases where analytic methods are not
able to produce reliable results due to the specific
properties of the search space, especially its size.
MOEAs require: (i) a well-defined search space to

represent potential solutions, (ii) objective functions to
evaluate the quality of solutions, (iii) genetic operators
to create new solutions from the set of previously
considered ones, and (iv) a selection mechanism to
choose solutions for the next generations [60]. The algo-
rithm starts with a population of randomly generated
individuals, which are subjected to genetic operators and
evaluation. On the basis of the fitness function values,
the selection procedure chooses the individuals to

constitute the next generation, on which the genetic
operators, the evaluation and the selection are applied
again. This procedure is repeated until a stopping rule is
activated or a stable solution is reached.
The genetic operators are responsible for generating

diversity in the population and the selection is supposed
to favour better individuals over others for reproduction.
Therefore, most of the better solutions from one gener-
ation pass to the next one. Certain worse individuals
may pass to the next generation as well; it is another
way to maintain diversity in the population and to avoid
getting stuck in a local optimum.

Genetic operators
As mentioned before, MOEAs require genetic operators
to produce new individuals from the previous gener-
ation. Usually two such operators are used: mutation
and crossover. Although they are both responsible for
producing variation in the population, they differ in
meaning and the results of their action. The mutation
operator makes small random changes in the individuals
to introduce new information into the population. The
crossover operator creates new individuals (offspring) by
recombining parts of two parents chosen from the previ-
ous generation. It is obvious that the form and imple-
mentation of these operators depend on the properties
of the search space and the way in which potential
solutions are presented.
In our simulations, the genetic codes under the BS

model were represented by vectors of 21 elements corre-
sponding to 20 amino acids and the stop translation
signal assigned to codon blocks. As the mutation oper-
ator, we used a simple swap, which exchanges the amino
acids assigned to two randomly selected codon blocks.
In the case of the crossover, we adapted the Position
Based Crossover (POS) operator [61]. The algorithm of
this operator is presented in Fig. 1 and in [51].
The genetic codes under the US model were repre-

sented by vectors of 64 elements corresponding to
codons with assigned respective amino acids. The muta-
tion operator was realized by assigning a randomly
selected amino acid to a randomly selected codon, differ-
ent from the previously assigned one. To guarantee that
all amino acids are always represented in the individuals,
this procedure was not applied when the selected codon
was the only one for a certain amino acid. We addition-
ally used a swap operator which selects at random two
codons encoding two amino acids and changes the
meaning of all the codons attributed to one of these
amino acids for the other amino acid and vice versa. In
the case of the US model, we had to propose a different
crossover operator from the one used in the BS model;
otherwise the offspring might not have inherited their
parents’ structures and some amino acids might have
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even been left out of the offspring’s structure. The full
description of this new operator is presented in Fig. 2
and can be found in our paper [51].

Objectives
As the objectives in the genetic code optimization we
considered the costs of all possible changes from one
amino acid to another caused by single-point mutations in
codons. In choosing the costs, we used the results

obtained by [59]. The authors applied a consensus fuzzy
clustering method to split more than 500 amino acid indi-
ces of the AAindex database [58] into 8, 24 or 40 subsets.
They also determined the representatives for each cluster.
Therefore, we can assume that the selected parameters
are representative for the most relevant amino acid prop-
erties. Regarding the computational complexity of our
optimization algorithm, we chose eight indices from the
AAindex database, which are the representatives of

A

B

Fig. 1 The scheme of the crossover operator for the BS model. a Amino acids of the parental code P1 are selected randomly and assigned to the
corresponding codon blocks in the offspring O1. Similarly, amino acids of the parental code P2 are also selected randomly and assigned to the
corresponding codon blocks in the offspring O2. b The consecutive amino acids of P1 are selected one by one and assigned to the remaining
codon blocks in O2. Similarly, the consecutive amino acids of P2 are also selected one by one and assigned to the remaining codon blocks in O1.
When an amino acid is already present in the offspring, the next one in the amino acid set is selected
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clustering into eight subsets. These indices are:
BLAM930101, BIOV880101, MAXF760101, TSAJ990101,
NAKH920108, CEDJ970104, LIFS790101 and
MIYS990104. They represent diverse amino acid proper-
ties, such as: electric properties (isoelectric point and po-
larity), hydrophobicity, alpha and turn propensities,
physicochemical properties, residue propensity (molecular
weight, average accessible surface area and mutability),
composition, beta propensity and intrinsic propensities
(hydration potential, refractivity, optical activity and flexi-
bility). On the basis of the chosen indices we created
matrices of squared differences between the values of the
given index. To make the comparisons between different
objectives easier, these matrices were standardized by div-
iding each element of the given matrix by the maximum
element of this matrix.

Fitness and objective functions
An important part of each MOEA is to measure the
quality of potential solutions in order to guide the search
for the most suitable solution to a given problem [60].
This task is realized by a fitness function F, which
assigns a fitness value to every individual in the popula-
tion, so that promising solutions could be selected for
the next generation.
In a multi-objective optimization problem, the fitness

function is based on the values of many objective func-
tions and every individual is described by a vector of
values calculated for the respective objective. In our
case, to obtain the values for each of the eight objectives,
we considered all the possible changes between amino
acids resulting from single-point mutations in the
codons of the genetic code, similarly to [24, 26]. The
squared differences in the given amino acid property
between the amino acids before and after mutation were
summed up and assigned as the objective function value
for the studied objective:

A

B

C

D

Fig. 2 The scheme of the crossover operator for the US model. a
Two offspring O1 and O2, which are identical to their corresponding
parents P1 and P2, are created. The same amino acid in P1 and P2,
e.g. a1 is randomly selected. If this amino acid is encoded by the
same codons (the orange arrow), no exchange of these codons is
performed between O1 and O2 (the black arrow). b If this amino
acid is encoded by different codons in P1 and P2 (the orange arrow),
these codons are exchanged mutually within O1 and O2 (the black
arrows). c If there are no codons for the amino acid a1 in one parent
to exchange, e.g. P1 but the second parent, e.g. P2 has still a codon
for this amino acid (the orange arrow), this codon is moved from
other amino acid, e.g. a3, and assigned to a1 in one offspring, e.g. O1

(the black arrow). In the second offspring O2, this codon is moved
from the amino acid a1 and assigned to the other amino acid a3
(the black arrow). d Codons that are the only ones for the given
amino acid in parents (the orange arrow) are not moved in the
offspring (the black arrow with the red x)
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Fi codeð Þ ¼
X

<c1;c2>∈C

pi c1ð Þ−pi c2ð Þ½ �2;

where: Fi(code) is the value of the objective function for
a given genetic code (code) and objective i, C is the set
of all pairs of codons which differ only by a single-point
mutation, c1 and c2 are codons, pi(c1) and pi(c2) are the
values of amino acid index i for the amino acids encoded
by the codons c1 and c2, respectively.
We compared the vectors of objective values for given

individuals according to the well-known Pareto domin-
ance concept [62]. It states that the solution S1 dominates
the solution S2 if no component of S1 is worse than the
corresponding component of S2 and at least one compo-
nent of S1 is better than the respective one of S2. However,
these conditions are not always fulfilled and then we get a
set of equivalent optimal solutions, which are not domi-
nated by each other. The set of optimal solutions, which
are non-dominated, i.e. the Pareto set, is denoted as P, and
its image F(P) is called the Pareto front [62]. In the SPEA2
algorithm, the fitness value assigned to each individual
depends on the number of individuals dominated by the
given individual and the number of individuals dominat-
ing the given individual [57].
We cannot rule out that the used fitness function is

too simple to correctly model the important factors that
influenced the evolution of the SGC in terms of the
adaptive hypothesis. However, this function is very
effective computationally and includes the most relevant
amino acid properties that are claimed by this hypoth-
esis. A similar function was applied by other researches,
who formulated the adaptive hypothesis. In this work we
applied the most advanced fitness function on the basis
of such properties. Therefore, we think that this function
is appropriate for the studied problem.

Selection
A new (mating) population is created by selecting individ-
uals for reproduction using the selection operator. We
used a tournament selection with the following algorithm:

1) Randomly choose two individuals of the current
archive set.

2) Compare the fitness values of the chosen
individuals.

3) Copy the individual with better fitness to the
mating pool with a probability proportional to its
fitness value.

4) Repeat steps 1–3 as many times as the desired
number of individuals in the mating pool.

Such algorithm allows for putting not only the most fitted
individuals but also some worse ones into the mating pool,
which helps in preserving the diversity of the population

and avoiding local optima. Tournament selection with a
tournament of size 2 and fitness proportional selection by
themselves are unlikely to provide sufficient selection pres-
sure for efficient optimisation [63–65]. However, sufficient
selective pressure (i.e., elitism) is achieved by the algorithm
using an archive where the best non-dominated individuals
are kept.

Strength Pareto evolutionary algorithm
To search the space of potential genetic codes, we
applied a customized version of the Strength Pareto
Evolutionary Algorithm (SPEA2) [57], which is crafted
for multi-objective optimization and finds an approxi-
mation of the set of optimal solutions to a given prob-
lem. The main loop of the SPEA2 algorithm according
to [57] is as follows (see also Fig. 3 for a graphical
representation):

Fig. 3 The scheme of the Strength Pareto Evolutionary Algorithm
(SPEA2). Nmax is the maximum size of the archive set, t - the
current number of generations, T - the maximum number of
generations, P - the population of individuals, A - the archive
set, A* - the final non-dominated set and K - the mating pool
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1. Let M be the size of population, N - the size of the
archive set, Nmax - the maximum size of the archive
set, t - the current number of generations (steps), T
- the maximum number of generations, P - the
population of individuals, A - the archive set, A* -
the final non-dominated set, K - the mating pool,
pm – the probability of applying the mutation
operator, pc – the probability of applying the
crossover operator.

2. Set t = 0, generate an initial population P0 with size
M and an empty archive set A0 = .

3. Go to the next generation t:=t + 1.
4. Calculate values of the fitness function for

individuals of Pt and At to select non-dominated
individuals.

5. Copy all non-dominated individuals of Pt and At to
At + 1.

6. Check the size of At + 1. If N(At + 1) >Nmax then
reduce At + 1 by the truncation operator. If N(At + 1)
<Nmax then fill At + 1 with the best dominated
individuals of Pt and At, according to the fitness
values.

7. If t ≥ T then create the A* set including the non-
dominated individuals of At + 1 and stop the
procedure.

8. Perform a binary tournament selection with
replacement between individuals of At + 1 and fill
the mating pool K with the winners until the size of
K reaches M.

9. Apply mutation and crossover operators with the
respective probabilities pm and pc to the individuals
of the mating pool K and set Pt + 1.

10. Increment t, i.e. t = t + 1 and go to step 4.

As the truncation operator we used the k-nearest neigh-
bour method, which is a non-parametric classification
method based on a similarity measure, e.g. distance func-
tions [66]. According to [57], SPEA2 shows very good
performance in comparison with other multi-objective
optimization algorithms and can be easily adapted to
various problems.

The measures of distances between codes
To compare the SGC with the sets of codes optimized
under the multi- and single-objectives, we proposed new
measures (distances) describing differences in the object-
ive function values of the genetic codes. In the case of
the multi-objective optimization, every code was repre-
sented by a vector of eight values of the objective
functions, whereas in the single-objective optimization,
it was described by a single value of the fitness function.
In the multi-objective case, we used two measures, mmin

and mmean:

mmin ¼ dbmin

dbmin þ dwmin
∙100%;

where dbmin is the minimum Euclidean distance in the
eight-dimensional space of objective functions between
the SGC and the codes minimizing amino acid replace-
ment costs (the best codes), whereas dwmin is the mini-
mum Euclidean distance in this space between the SGC
and the codes maximizing the costs (the worst codes),

mmean ¼ dbmean

dbmean þ dwmean
∙100%;

where dbmean is the average Euclidean distance between
the SGC and the (best) codes minimizing amino acid
replacement costs, whereas dwmean is the average Euclid-
ean distance between the SGC and the (worst) codes
maximizing the costs.
In the case of the single-objective optimization, we

used the following measure:

ms ¼ db
dbw

∙100%;

where db is the distance between the SGC and the
best code, whereas dbw is the distance between the best
code and the worst code. This measure is similar to the
percentage distance minimization proposed by M Di
Giulio [37]. However, it does not determine the code op-
timality in relation to random codes but to the best and
worst codes obtained by our algorithm.
All of these measures take values in the range from 0

to 100% and the values closer to zero indicate that the
SGC is more similar to the best theoretical codes in
terms of the robustness to the costs of amino acid
replacements than to the worst codes. The inclusion of
the worst codes in our approach enabled us to locate the
SGC in the general space of possible genetic codes more
accurately than it was previously done.
To assess the similarity (or lack thereof ) between the

SGC and the optimized codes, we used another measure
of distance between the structures of two codes, dstr,
which is simply the number of codons having different
amino acids assigned in these two codes:

dstr X;Yð Þ ¼
X61

i¼1
dX;Y
i ;

where X and Y are genetic codes and dX;Y
i ¼ 1 if codon i

encodes different amino acids in the codes X and Y. If

the codon i has the same meaning, then dX;Y
i ¼ 0. This

measure is in fact a metric on a set of words with the
same length, known as the Hamming distance; the
smaller the number of the same assignments of amino
acids to codons between two compared codes, the larger
dstr. Since we assumed that the stop translation codons
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do not change their meaning in the considered models
of the genetic code, the maximum of dstr is 61.

Simulation procedure
To find the codes that minimize or maximize the cost of
amino acid replacements, we run MOEA-based simula-
tions using a customized version of the SPEA2 algorithm
[57]. We started with a population of M = 2800 randomly
selected codes and we kept this number of codes in each
consecutive generation. We also established the Pareto
(archive) set to include up to Nmax = 700 individuals. Each
simulation was run up to T = 3000 steps (generations) and
was repeated 20 times. In the simulations, we used the
previously described fitness function, objective functions
and genetic operators. The probabilities of mutation and
crossover were set to 0.9 and 0.3, respectively, which
means that in each step of the simulation we applied
the mutation and crossover operators, one after the
other, to, respectively, 90 and 30% of the individuals in
the mating pool.
It seems natural to compare the outcome of

multi-objective optimizations with the results of optimi-
zations based on the same objectives but considered
separately. Therefore, we also developed a single-object-
ive customized evolutionary algorithm derived from the
SPEA2 and we run it to find the optimized code for each
of the eight objectives. Every simulation started also with
a population of 2800 randomly chosen individuals. The
probabilities of mutation and crossover were the same as
in the case of the multi-objective optimization and the
fitness function was analogous to the one used in the
multi-objective case. The number of top optimized
codes, selected for the archive set, was also set to 700.
Each simulation was run up to 3000 steps and repeated
50 times.
In further parts of this paper, when we refer to the Pa-

reto set obtained in any kind of multi-objective simulation,
we mean a set of all the optimized codes combined from
the respective repeated runs, i.e. 20 ∙ 700 = 14,000 codes.
In the case of the single-objective optimization the final
number of the optimized codes is 50 ∙ 700 = 35,000 codes.

Results
Optimality of the SGC in comparison to the optimized
codes
The values of the proposed distance measures between
the SGC and optimized codes, mmin, mmean and ms can
range from 0 to 100%. The values smaller than 50%
indicate that the SGC shows a tendency to minimize
rather than maximize the costs of amino acid replace-
ments under a given criterion. The smaller the value,
the more similar the optimality of the SGC to the best
theoretical codes, i.e. minimizing the replacement costs.

The values of the single-objective measure ms are
presented in Table 1.
Only in the case of the BLAM index (representing

electric properties) under the BS model, the standard
genetic code is slightly closer to the codes that maximize
this parameter than to those minimizing it (ms~ 57%).
Interestingly, the measure ms for the same index
received the lowest value under the US model. In all
other cases of the BS model, the values of ms are lower
than 50% and range from ~ 14% for the MYIS index to
~ 43% for the MAXF index. Under the US model, the
range of ms is narrower, from ~ 12% for the BIOV,
BLAM and TSAJ indices to ~ 18% for the MYIS index.
It should be noted that the values calculated under the
US model are smaller because in a larger and less
restricted search space it is possible to find the codes
that maximize (and also minimize) the objective
function to a greater extent than in the restricted space
of the BS model. Thereby the denominator of ms

increases for the US model. These results suggest that
the SGC is closer to the codes minimizing the cost than
to the codes maximizing it regarding every single object-
ive except for the already mentioned BLAM index under
the BS model.

Table 1 The values of the measure ms, which describe the
relations between the SGC and the theoretical optimized codes
obtained in the single-objective optimization algorithm under
the BS and US models of the genetic code

Model Objective mS [%]

BS BIOV 16.16

BLAM 57.47

CEDJ 26.75

LIFS 30.30

MAXF 43.28

MYIS 14.32

NAKH 32.34

TSAJ 31.63

US BIOV 12.18

BLAM 11.72

CEDJ 13.37

LIFS 15.48

MAXF 18.02

MYIS 13.29

NAKH 15.82

TSAJ 11.97

The same eight objectives were also used in the multi-objective optimization
(Table 2). Values lower than 50% indicate that the SGC is closer to the theoretical
code minimizing the costs in amino acid replacements rather than to the codes
maximizing them. The objectives represent the following amino acid properties:
BLAM - electric properties, BIOV - hydrophobicity, MAXF - alpha and turn
propensities, TSAJ - physicochemical properties, NAKH - residue propensity, CEDJ
- composition, LIFS - beta propensity and MIYS - intrinsic propensities
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In the case of the multi-objective optimization tasks,
we calculated the values of the mmin and mmean

measures (Table 2). Generally, under both the BS and
US models, these values are similar and much lower
than 50%, which indicates that the SGC is definitely
closer to the codes minimizing the consequences of
amino acid replacements than the codes maximizing
them. The distances of the SGC to the best codes are
slightly smaller under the less restrictive model of the
genetic code. The average values of these measure are
about two times larger than the minimum. It indicates
that the SGC can minimize the cost of amino acid
replacements quite similarly to some of the best theoret-
ical codes but on average it is more distant from them
because the Pareto front of the best equivalent codes is
quite extensive.
To visualize the position of the SGC in the space of

codes optimized under the multi-objective approach, we
carried out discriminant analysis with canonical analysis

[67] and presented the plot of two discriminant func-
tions (Fig. 4). The theoretical codes are clearly separated
into two sets, the best and the worst codes that were
differently optimized, to minimize or to maximize the
objective functions, respectively. The standard genetic
code is placed definitely among the best codes but at the
edge of their distribution. It suggests that only a small
fraction of the best codes show the same properties as
the SGC. According to the standardized function coeffi-
cients, the indices MAXF, TSAJ and NAKH have the
greatest contribution to the first discriminant function
(from 0.628 to 0.832) in the BS and US models. The
second function is associated most with BIOV (0.985
and 1.239 in the BS and US models), MYIS (− 1.750 in
the BS model) and NAKH (− 0.654 in the US model)
indices. The factor structure coefficients indicate that
the first discriminant function is weakly but positively
correlated (from 0.153 to 0.350) with all indices in the two
models, whereas the second function is most correlated
with BIOV and MYIS, negatively (− 0.779 and − 0.798) in
the BS model and positively (0.803 and 0.727) in the US
model. These correlations and the position of the SGC in
the plot imply that this code has a tendency to minimize
these features.
Furthermore, we checked how many codes in the

Pareto set obtained in the multi-objective optimization
have lower values of the objective functions than the
SGC, in other words, how many of them minimize the
objective functions better than the SGC. The results are
presented in Table 3.

Table 2 The values of the measures mmin and mmean, which
describe the relations between the SGC and the Pareto sets of the
theoretical optimized codes obtained from the multi-objective
optimization algorithm under the BS and US models

Model mmin [%] mmean [%]

BS 17.1 36.6

US 14.6 36.1

Values lower than 50% indicate that the SGC is closer to the set of codes
minimizing the costs in amino acid replacements rather than the codes
maximizing them

Fig. 4 The plot of the discriminant function analysis based on the eight objective functions for the standard genetic code (SGC) as well as the
codes minimizing (Best) and maximizing (Worst) the objective functions under the block structure (a) and unrestricted (b) models. The
discriminant analysis was done in Statistica (StatSoft Inc. 2018, version 13, https://www.tibco.com/products/tibco-statistica)
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In the case of the BS model, out of the 14,000 codes
only 25 were found better minimized than the standard
genetic code for all 8 objectives. Most of the found codes
(~ 94%) are able to minimize two to five objective func-
tions better than the SGC. Under the US model, we
found only one code which minimizes all 8 objectives
better than the SGC. Most of the found codes (~ 97%)
are characterized by a better minimization of one to four
objective functions than the SGC. Obviously, the small
number of the codes minimizing better all eight objec-
tives may result from the difficulties in searching the
huge space of potential codes with so many optimization
criteria. However, in spite of these limitations, the results
seem representative enough to justify the statement that
it is possible to find the codes that are more robust to
the costs of amino acid replacements than the SGC,
when these cost are described by eight parameters. The
number of better codes increases substantially when
smaller number of parameters is considered. These
results give another argument in favour of the opinion
that the standard genetic code is clearly not our best
option, but nevertheless it is still quite well optimized.

Comparisons of objective functions for individual amino
acid properties
Since the single-objective algorithm is focused on
optimization of only one objective function and the
multi-objective algorithm optimizes many functions, we

should expect that the genetic codes found in the former
approach are better optimized for the individual func-
tion. To compare the results for each objective function
corresponding to the respective amino acid index, we
plotted their values for the SGC and for the best code
found in the single-objective optimizations as well as the
ranges of values of the respective objective functions for
the best codes in the Pareto set obtained in the
eight-objective optimization (Fig. 5).
We observed that under both the BS and US models

the values of the objective functions are the smallest for
the best code obtained in the single-objective optimiza-
tions, which could be expected (Fig. 5). However, the
minimum values of the objective functions of the codes
from the Pareto set obtained in the multi-objective
optimization are only slightly greater. Under the BS
model, the differences range from 0.26 in the case of the
BLAM index to 2.73 in the case of the LIFS index; under
the US model they range from 2.06 in the case of the
BLAM index to 19.5 in the case of the MYIS index.
These differences are relatively small because the values
of the objective functions for the best codes found by
the multi-objective optimization algorithm are only
1.005 to 1.303 times greater than the respective values
obtained in the single-objective optimization. It proves
that using multi-objective optimization methods we can
find codes which are almost as optimal as those obtained
by the single-objective optimization algorithms regard-
ing a given objective. However, the codes found by the
multi-objective methods have the additional advantage
of being optimized also with regard to other criteria. For
example, under the US model one of the codes in the
Pareto set obtained in the multi-objective optimization
has the value of the objective function BLAM equal to
59.922 whereas the value for the best code optimized
only for the BALM index is merely slightly smaller:
55.439. However, the values of the other objective
functions for the code found by the multi-objective
optimization algorithm indicate that it is better opti-
mized regarding five out of eight objectives: BIOV, CEDJ,
LIFS, MAXF and MYIS (Table 4).
The values of the objective functions for the SGC are

only 1.2 to 1.8 times greater than the respective values for
the codes optimized to minimize one objective (Fig. 5)
and 1.2 to 1.6 times greater than the respective values for
the best codes optimized to minimize all the eight objec-
tives simultaneously. However, in many cases, the values
of the objective functions for the SGC are smaller than
the average values for the codes of the Pareto set obtained
in the multi-objective optimization; they are greater only
for the BLAM index under both models of codes as well
as for the MAXF and TSAJ indices under the BS model.
Moreover, the function values of the SGC never exceed
the maximum values obtained for codes optimized in the

Table 3 The number and percent of the codes in the Pareto
set obtained in the multi-objective optimization under the BS
and US models, which have the given number of the objective
functions values smaller than the standard genetic code

Model Number of
objective functions

Number of codes Percent of 14,000

BS 8 25 0.18

7 117 0.84

6 542 3.87

5 1927 13.76

4 4551 32.51

3 4910 35.07

2 1806 12.90

1 117 0.84

US 8 1 0.01

7 12 0.09

5 302 2.16

6 61 0.44

4 1724 12.31

3 5144 36.74

2 5230 37.36

1 1524 10.89
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multi-objective approach. These observations suggest that
the standard genetic code is quite well optimized regard-
ing the eight objectives considered in this study, although
it is not perfect.

Comparison of the genetic codes structures
To check how much the structure of the optimized
codes obtained in the multi-objective optimization is
different from the SGC, we applied the measure dstr. It

shows the number of codons which have different amino
acids assignments in two compared codes. The
maximum possible value of dstr is 61 because we fixed
the meaning of the stop translation codons as it is in the
SGC. For both the BS and US models, we considered
two groups of codes: (i) the ones (called Group 8) char-
acterized by the values of the eight objective functions
smaller than the SGC and (ii) all the codes from the
Pareto set of optimal solutions. The median values of dstr

Table 4 The values of the objective functions for the best code optimized to minimize only the BLAM objective costs (single-objective)
and for one of the codes in the Pareto set obtained in multi-objective optimization (multi-objective). Both codes were optimized under
the US model

Objective BIOV BLAM CEDJ LIFS MAXF MYIS NAKH TSAJ

single 108.53 55.439 110.73 88.357 131.26 112.56 90.517 84.602

multi 100.702 59.922 97.336 77.79 96.107 100.825 102.578 97.236

A

B

Fig. 5 The values of the individual objective functions under the BS (a) and US (b) models for the SGC and the codes that minimize the
functions in the single- and multi-objective optimizations. In the latter case, the blue bars show the average values of the function calculated for
the codes in the Pareto set and the whiskers’ ends indicate the minimum and maximum values of this function. The objectives represent the
following amino acid properties: BLAM - electric properties, BIOV - hydrophobicity, MAXF - alpha and turn propensities, TSAJ - physicochemical
properties, NAKH - residue propensity, CEDJ - composition, LIFS - beta propensity and MIYS - intrinsic propensities
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are equal to 58 or 59 in both groups of codes and under
both models, which means that the optimized codes
have usually only few assignments of codons to amino
acids the same as the SGC.
The code most similar structurally to the SGC is

among the whole Pareto set optimized under the BS
model. However, it still has 38 different assignments
(Table 5). This code retained the same codon blocks of
leucine, isoleucine, threonine, tyrosine, asparagine and
arginine as are in the SGC (Fig. 6b). Lysine and aspartic
acid kept the same number of codons and stayed in the
same column as in the SGC. However, the other 12
amino acids changed their codon numbers and positions
in the code table. The greatest difference refers to serine,
whose number of codons was reduced from six to two,
and tryptophan, for which the number of codons
increased from one to four.
The only code found under the US model, which has

the values of all 8 objective functions smaller than the
SGC, is much different from the standard genetic code
(Fig. 6c). Only the codons ACC and ACA for threonine
and AGC for serine have the same meaning as in the
SGC. Serine and threonine are also assigned to consider-
ably more codons, i.e. 16, than the others. Aspartic acid
has five codons assigned, asparagine three, glycine four,
alanine and histidine two, whereas the remaining amino
acids are assigned to single codons. The codon block
structure typical of the SGC is not well represented in
this code. Many codons encoding the same amino acid
are not adjacent in the code table. The largest block of
degenerated codons associated with the third codon
position consists of three codons for serine. Besides that,
there are eight two-fold degenerated codons for serine,
threonine and aspartic acid. The other cases of degener-
ation are related to the first and the second codon
positions, e.g. there are three blocks with three codons
each which can encode serine and threonine regardless
of the nucleotide in the first codon position. Two such
three-codon blocks degenerated in terms of the second
codon position encode also serine and threonine.

The predominance of serine and threonine in the best
code may follow from the fact that the values of their
properties are very close to the average values for all
amino acids. Then, the cost of replacements between
amino acids is minimized. The same was observed in the
case of polarity, when the best code was dominated by
alanine, serine and glycine [51]. To verify it in the
multi-objective case, we calculated the absolute differ-
ences between the average value of each amino acid
index considered in our optimization, and the respective
values for all 20 amino acids (Table 6).
In the cases of the BLAM and NAKH indices, serine

and threonine have their values of these indices close to
the average values. This tendency is also present for
threonine in the LIFS and CEDJ indices. In consequence,
threonine has on average the smallest deviation from
average values of all indices (Table 6). Generally, there is
a significant negative Spearman correlation between the
number of codons assigned to a given amino acid and
the average of the absolute differences from the eight
amino acid indices: − 0.659 (p-value: 0.0016). Therefore,
a code having amino acids with ‘average’ properties
assigned to large number of codons minimizes the costs
of replacements with other amino acids, especially those
with large values of the given indices. This property is
not present in the SGC because this coefficient is −
0.163 and is not statistically significant (p-value, 0.49).
Finally, to compare the 25 codes that were found under

the BS model and that minimize all eight objective func-
tions better than the SGC, we calculated how many of
these codes have amino acids assigned to particular codon
blocks as in the SGC. The results are presented in Fig. 7.
The same assignments of amino acids to codons as in the
SGC occur very rarely in the optimized codes. The encod-
ing of serine and tyrosine was not changed only in five
and four optimized codes, respectively. We can also notice
that the most frequent assignment in the optimized codes
was that of threonine to the codon block linked with
arginine in the standard code. It occurred 12 times.
Threonine was also five times assigned to the codon block
of leucine and four times to the serine codon block. Inter-
estingly, the codon blocks of arginine, leucine and serine
are composed of six codons in the SGC, which is the
largest possible number of codons in a block in the natural
code (Fig. 6a). Such assignment of threonine to the large
number of codons minimizes the costs of its replacements
with other amino acids and vice versa because this amino
acid shows the smallest deviation from the average indices
values of all amino acids (Table 6). Threonine is also
widely distributed in the best code found under the US
model (Fig. 6c). Histidine, another amino acid with the
small deviation in the indices (Table 6) is encoded by two
codons in the SGC (Fig. 6a) but in the best codes of the
BS model, it was assigned 17 times to four-codon blocks,

Table 5 The minimum, median and maximum values of the
measure dstr for all the codes in the Pareto sets of optimal
solutions and for the codes with all eight values of the objective
functions smaller than in the case of the SGC (Group 8), under the
BS and US models

Model Subgroup Total
number
of codes

Structure distance dstr

min median max

BS Group 8 25 51 59 61

Pareto set 14,000 38 59 61

US Group 8 1 58 58 58

Pareto set 14,000 51 59 61
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which also increased its representation in the optimized
codes (Fig. 7).
Besides the assignment of threonine to arginine codons,

the next frequent assignments in the best codes of the BS
model are: lysine to cysteine codons (in 10 codes), trypto-
phan to glutamic acid codons (in nine codes) and leucine
to methionine codons (in nine codes) (Fig. 7). The last
case is a reduction of the codon number from six to only
one and may be associated with the fact that this amino
acid is characterized by highly hydrophobic properties and
has the values of most amino acid indices strongly
deviated from the average (Table 6). Leucine was addition-
ally assigned to one tryptophan codon in two of the
optimized codes and 13 times to two-codons blocks of
other amino acids. In general, the other amino acids with
values of most amino acid indices different from the
average value were much more frequently assigned to
one- or two-codons blocks than to blocks consisting of
more than two codons. Such assignments of these amino
acids help in minimizing the costs of replacements with
other amino acids and vice versa.

Discussion
The results presented in this work uncovered interesting
aspects of the standard genetic code optimality using new
approaches. In contrast to the previous methods, which
used mainly randomly generated codes as a reference to
the SGC [24–27, 44], we compared this code with not
only the best, but also the worst alternatives maximizing
the probability of harmful changes in proteins. To find the
optimal codes, we applied a specific version of an evolu-
tionary algorithm, which seems to be a better approach in
the study of the genetic code optimization than the classic
comparison of the SGC with randomly generated theoret-
ical alternatives due to the large number of possible codes
and the extremely vast search space [37, 45–52]. The
random codes represent only a very tiny fraction of all
possibilities and are not necessarily representative of the
whole space of the theoretical codes. Moreover, depending
on the randomization method, the generated codes can be
characterized by relatively uniform or biased amino acid
assignments to codons. In comparison with the randomly
generated codes, the SGC turned out to be quite robust to
mutations and mistranslations [24, 26, 27, 30, 68–70].
However, when evolutionary algorithms were applied to
find the most robust codes, the SGC turned out much less
optimized to minimize the mutational and translational
errors [38, 47, 49, 51]. Our findings confirm the second
conclusion.

A

B

C

Fig. 6 The standard genetic code (a), the code which was found
under the BS model and is the most similar structurally to the SGC
(b), the only code found under the US model, which has the values
of all eight objective functions smaller than the SGC (c)
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So far, the code optimality was usually studied in terms
of only few single amino acid properties, mainly polar
requirements [24, 37, 41, 47, 50, 55, 56]. However, it is
obvious that if such optimization in fact occurred, many
features of amino acids must have influenced the SGC
evolution. Therefore, we applied a more general
approach which took into account more than one prop-
erty of amino acids. To avoid an arbitrary choice of the
amino acids features, we considered the amino acid indi-
ces representing eight clusters of more than 500 various
amino acid properties. Therefore, we can assume that
the selected parameters are representative of the most
relevant amino acid properties. As a result, we were able
to investigate the SGC optimality under relatively
general conditions and without arbitrary constraints.
The presented outcomes demonstrate that it is hard to

interpret the properties of the SGC unambiguously. On
the one hand, it could be significantly improved in all
considered parameters. There is a substantial fraction of
codes that minimize the amino acid replacement effects
better than the SGC according to several amino acid
properties simultaneously. Moreover, the structures of
the best genetic codes differ substantially from the SGC

structure, which indicates that the full optimization of
the consequences of amino acid replacements can be
achieved by a completely different assignments of amino
acids to codons. The optimized structures are dominated
by amino acids with average physicochemical properties.
Therefore, we can state that the standard genetic
code is not fully optimized in this respect. It is pos-
sible that the addition of amino acids with extreme
properties to the genetic code during its expansion
was more favourable than the potential benefits
resulting from the minimization of mutational and
translational errors in proteins. The amino acids with
disparate features could provide new properties and
functionality of translated peptides and proteins. On
the other hand, using new types of measures placing
the SGC in the global space of the theoretical codes
and taking into consideration not only the best but
also the worst possible genetic codes, we observe that
the SGC has nevertheless a strong tendency to
minimize the costs of potential amino acid replace-
ments under different and often mutually exclusive
criteria. The SGC appears to minimize the costs
related to hydration potential, refractivity, optical

Table 6 The absolute differences between the average values of a given index and the individual values of this index for each
amino acid

Amino
acid

Amino acid index Average Number
of
codons

BLAM BIOV MAXF TSAJ NAKH CEDJ LIFS MYIS

Ala 0.516 0.043 0.243 0.239 0.262 0.337 0.062 0.067 0.221 2

Arg 0.318 0.498 0.093 0.207 0.284 0.012 0.057 0.400 0.234 1

Asn 0.078 0.519 0.230 0.093 0.162 0.116 0.239 0.582 0.252 3

Asp 0.047 0.540 0.062 0.128 0.244 0.058 0.305 0.764 0.269 5

Cys 0.047 0.762 0.050 0.181 0.147 0.360 0.070 0.964 0.323 1

Gln 0.349 0.513 0.117 0.015 0.232 0.070 0.046 0.612 0.244 1

Glu 0.068 0.688 0.387 0.020 0.244 0.244 0.233 0.885 0.346 1

Gly 0.484 0.196 0.338 0.352 0.070 0.244 0.233 0.461 0.297 4

His 0.109 0.137 0.026 0.062 0.272 0.337 0.057 0.067 0.133 2

Ile 0.391 0.672 0.010 0.087 0.525 0.023 0.430 0.842 0.372 1

Leu 0.474 0.640 0.201 0.087 0.700 0.419 0.148 0.933 0.450 1

Lys 0.276 0.873 0.147 0.096 0.266 0.198 0.184 1.188 0.403 1

Met 0.411 0.529 0.303 0.099 0.064 0.302 0.087 0.721 0.315 1

Phe 0.130 0.873 0.099 0.209 0.360 0.128 0.120 0.964 0.360 1

Pro 3.089 0.233 0.320 0.096 0.183 0.035 0.349 0.764 0.634 1

Ser 0.068 0.498 0.194 0.217 0.035 0.186 0.117 0.552 0.233 16

Thr 0.078 0.328 0.146 0.105 0.019 0.035 0.048 0.279 0.130 16

Trp 0.120 0.640 0.008 0.367 0.168 0.442 0.280 0.812 0.355 1

Tyr 0.266 0.153 0.200 0.226 0.112 0.221 0.275 0.691 0.268 1

Val 0.172 0.524 0.026 0.023 0.445 0.209 0.424 0.691 0.314 1

Since the indices were in different scales, they were at first normalized by their maximum values. The column next to the last contains the average calculated
from the values in a row. The last column contains the number of codons for the given amino acid in the best code that was found under the US model and has
the values of all eight objective functions smaller than the SGC
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activity, flexibility and hydrophobicity but it is very
poorly optimized according to electric properties.
Our findings correspond to other results suggesting that

the SGC is only partially optimized and is not located even
in a deep local minimum [38, 51, 71]. Various models
focusing on the genetic code expansion and occupation of
codons by amino acids were proposed. However, a genetic
code minimizing mutational and translational errors did
not have to be directly selected under these scenarios.
According to one of them, the SGC could have been
derived from a primeval code consisting of RNY (R-pur-
ine, Y-pyrimidine) codons [72]. Next, additional codons
could have been generated in the second (NYR) and the
third (YRN) reading frames as well as by transversions in
the first (YNY) and third (RNR) codon positions [73, 74].
Other models assume that the reduction of codon ambi-
guity resulted from successive binary choices based on
distinct properties of two classes of aminoacyl-tRNA
synthetases, which aminoacylated tRNAs differently [75,
76]. A specific complementarity in tRNAs and these
synthetases could also have contributed to the SGC
evolution [75]. It was also postulated that the SGC
started from GNN codons and rapidly developed into
a four-column code [77]. In this model, amino acids
were assigned to codons to minimize the disruption

of already existing proteins. In agreement with the
coevolution hypothesis, the early code also consisted
of GNN codons but amino acids were assigned to
codons according to the development of biosynthetic
pathways [19]. In the 2–1-3 model, the coding specifi-
city was successively increased in individual codon
positions in the order: the second, the first and the
third codon position [78, 79].
Assuming the correctness of these models, it is not

inconceivable that the minimization property of the
SGC could have evolved as a by-product of evolution
without a direct selection on this feature and it
could have been driven by other factors, e.g. specific
additions of amino acids to the code to minimize
damages in already encoded proteins [77], the diver-
sification of the repertoire of amino acids in proteins
[7, 77, 80, 81], biosynthetic pathways [14–19] or the
duplication of genes for tRNAs and aminoacyl-tRNA
synthetases [7, 79, 82–86] as well as their coevolu-
tion [87]. According to these concepts, the physico-
chemical properties of amino acid played only a
subsidiary role in the SGC evolution [20, 21, 88],
whereas the harmful effects of mutations were mini-
mized mainly by the direct optimization of the
mutational pressure [29, 89–91]. When the SGC

Fig. 7 A heatmap presenting the numbers of codes which have a given amino acid (horizontal axis) assigned to the particular codon block
(vertical axis). The data were obtained for 25 codes from the Pareto set under the BS model, which have the values of the eight objective
functions better minimized than the standard genetic code
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reached a given evolutionary stage, it was fixed [40],
which could have prevented its full optimization and
reassignments of already introduced amino acid to
the code because any substantial reassignments
would be lethal [3].
Hence the question about the main forces respon-

sible for the present structure of the standard genetic
code still remains open. However, our results are a
good motivation for the future studies on this prob-
lem. It seems clear that the SGC did not evolve to
optimize only one selected property, but there must
have been several different factors involved. There-
fore, the multi-objective optimization is a justifiable,
if not necessary, approach. Future studies should take
into account other objectives related to the genetic
code adaptability.
Our findings can be very useful to researchers

modifying the genetic code of the living organisms
and designing artificial ones [92–96]. The knowledge
of which assignments of codons to amino acid are
beneficial to the organism and which could be chan-
ged to improve the desired characteristic is vital in
this line of research. Such modifications can be used
to produce peptides or proteins including unnatural
amino acids and showing novel properties.
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