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ABSTRACT

The proper representation of the search space is the fundamental step in every optimization
task, because it has a decisive impact on the quality of potential solutions. In particular, this
problem appears when the search spaces are nonstandard and complex, with the large
number of candidate solutions that differ from classical forms usually investigated. One of
such spaces is the set of continuous-time, homogenous, and stationary Markov processes.
They are commonly used to describe biological phenomena, for example, mutations in DNA
sequences and their evolution. Because of the complexity of these processes, the represen-
tation of their search space is not an easy task but it is important for effective solving of the
biological problems. One of them is optimality of mutational pressure acting on protein-
coding sequences. Therefore, we described three representations of the search spaces and
proposed several specific evolutionary operators that are used in evolutionary-based opti-
mization algorithms to solve the biological problem of mutational pressure optimality. In
addition, we gave a general formula for the fitness function, which can be used to measure
the quality of potential solutions. The structures of these solutions are based on two models
of DNA evolution described by substitution-rate matrices, which are commonly used in
phylogenetic analyzes. The proposed representations have been successfully utilized in
various issues, and the obtained results are very interesting from a biological point of view.
For example, they show that mutational pressures are, to some extent, optimized to mini-
mize cost of amino acid substitutions in proteins.

Keywords: algorithms, DNA, evolutionary optimization, Markov processes, mutation, substitu-

tion rate matrix.

1. INTRODUCTION

The problem of non-standard search spaces with numerous, complex, or multidimensional solutions

occurs frequently in practice. In such cases, the optimal solutions can be extremely hard to find by

analytical and exhaustive search methods. In this context, evolutionary-based algorithms appear to be a
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promising approach because of their elasticity and relatively weak restrictions (De Jong et al., 1997).

However, these procedures require a well-defined potential candidate solution to describe evolutionary

operators effectively. They also need a suitable representation of the fitness function, which is responsible for

the evaluation of a given solution.

Such complex search spaces characterize many biological processes, which are inherently nonlinear and

complicated. These phenomena are usually modeled by some realizations of stochastic processes. There-

fore, the problem of finding an appropriate solution is, in fact, a question about properties of a particular

stochastic process.

In this article, we show three representations of continuous-time, homogeneous, and stationary Markov

processes, which are commonly used in description of mutations and evolution of DNA sequences. They

constitute specific classes of stochastic processes, which were tested in empirical examples as search spaces

in studies on the potential optimality of the mutation accumulation process (B1a _zej et al., 2013, 2015,

2017). We described in detail the technical difficulties that can appear in solving these problems. It is clear

that the way of representation of the candidate solution or, more precisely, the definition of its structure

and properties has a strong impact on the shape of the evolutionary operators and, in consequence, on

the quality of potential solutions. Therefore, we described evolutionary operators, that is, mutation and

crossover, which were adopted to the specificity of the proposed search spaces in an evolutionary-based

algorithm to find theoretically optimal solutions. Finally, we gave a detailed overview of the structure and

the properties of the fitness function, which can be used in the mutational pressure optimization problems.

The presented methods can be useful in any optimization processes in which the solutions are described by

homogeneous and stationary Markov processes with finite state space.

1.1. Mutations in DNA sequences

The mutational pressure is a process of introducing spontaneous changes, that is, mutations, into DNA

sequences. It is an indispensable component of biological evolution, because together with selection it is

responsible for genetic variation observed in all living organisms. These changes arise as a result of many

factors such as radiation or chemicals and can be also introduced during the synthesis and repair of the

DNA molecule.

The most deleterious are nonsense mutations, that is, changes of sense codons into stop codons, which

lead to shortening the length of a gene product (protein). Consequences of mutations of sense codons into

other sense codons depend on differences in the physicochemical properties (e.g., size, charge, hydro-

phobicity) of replaced amino acids. The more different these amino acids are, the more harmful their

replacement is for the coded protein.

It is supposed that the mutations observed in real genomes are not only a result of a strict random process

but also the coevolution between the mutational pressure and additional constraints that are imposed on

gene expression and products by the process of natural selection and properties of the genetic code

(Freeland and Hurst, 1998; Freeland et al., 2003; Archetti, 2004; Dudkiewicz et al., 2005; Najafabadi et al.,

2005; Itzkovitz and Alon, 2007; Mackiewicz et al., 2008; Massey, 2015). The consequences of mutational

pressure are ambiguous. From one point of view, most changes are deleterious and generate unwanted costs

of their repairing (Kimura, 1967; Drake, 1991). Therefore, a tendency to decrease the mutation rate should

exist in organisms. On the other hand, mutational pressure is crucial to generate a genetic variability that

is necessary for quick adaptation of a given organism to a changing environment (Travis and Travis, 2002;

Bedau and Packard, 2003; Denamur and Matic, 2006). Therefore, it seems reasonable to assume that

mutational pressure evolves as a result of a specific trade-off between the accuracy to preserve genetic

information in protein-coding genes and the requirements for adaptational flexibility (Radman et al., 1999;

Sniegowski et al., 2000).

It is worth mentioning that the potential optimization of mutational pressure may be associated not only

with the global mutational rate but also with the pattern of nucleotide substitutions, that is, the rates of

change between one type of nucleotide and another. Therefore, it is interesting to find sets of these rates that

are optimized to these two extremes, that is, minimizing changes in genes or maximizing their variation and

comparing them with the empirical mutational matrices (B1a _zej et al., 2013, 2015). However, it is not an

easy task. Although the process of DNA mutation is commonly described by a class of transition proba-

bility matrices, which represent stationary, homogenous, and continuous-time stochastic processes, they

can be realized in a huge number of possibilities, even for a fixed nucleotide composition of DNA
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sequence. That is why it is challenging to construct the search space of these solutions, especially for the

optimality problem presented earlier.

1.2. Models of nucleotide substitutions

Mutations introducing spontaneous changes into DNA sequences are usually described by models that

are based on the theory of continuous-time, homogeneous, and stationary Markov processes. It is assumed

that mutational pressure is a realization of a four-state, continuous-time, homogeneous, and stationary

Markov process. Such a process is uniquely defined by a substitution-rate matrix

Q = fqijg‚ i‚ j 2 fA‚ T‚ G‚ Cg

and stationary distribution of nucleotides p = (pA‚ pT ‚ pG‚ pC). This representation is commonly used in

the description of DNA sequence evolution. We applied two popular models describing such evolution

(Tables 1 and 2). The first one was the generalized time-reversible model (GTR) (Lanave et al., 1984;

Tavare, 1986), in which time reversibility of the Markov process means that the detailed-balance

condition is fulfilled:

piqij = pjqji‚ i 6¼ j:

In this case, pi is the stationary probability of being in state i, that is, one of the four possible nucleotides,

whereas qij denotes the rate of substitution from nucleotide i to nucleotide j. It should be noted that there is

no biological reason to expect that the substitution process is reversible and the GTR model is used because

of mathematical convenience and easiness of application (Felsenstein, 2004; Yang, 2006). Therefore, we

also considered the general unrestricted (UNREST) model (Yang, 1994), which includes 12 different

parameters (rates) and is the most general representation of the process of nucleotide substitutions with only

one restriction on the stationary distribution p (Table 2).

These two models were used to describe three special classes of potential solutions that were denoted as:

MGTRs, MGTR, and MUN . The MGTRs class is composed of the stochastic processes that are time-reversible

with a fixed stationary distribution p and have a similar speed of convergence to the stationarity as the

corresponding empirical processes evaluated from real data. MGTR is a generalization of the MGTRs class,

because it contains all GTR processes with a fixed p and without any additional restrictions. Finally, the

MUN is composed of all UNREST type Markov processes with a fixed p. It is clear that the class of Markov

processes generated according to the UNREST model is more general than the one generated by the GTR

assumptions; therefore, the following property is fulfilled:

MGTRs � MGTR � MUN :

We used MGTRs and MGTR classes as potential search spaces because of their mathematical convenience.

Moreover, MGTRs enabled us to compare the empirical data with a special class of GTR models assuming

the same speed of convergence to the stationarity. Although these search spaces are sets of continuous-time,

homogeneous, and stationary Markov processes, they require different methods to generate potential so-

lutions, which is interesting from a computational point of view. They also need appropriate evolutionary

operators, which have to take into account the specificity of the selected search spaces.

Table 1. The Nucleotide Substitution-Rate

Matrix Q of the Generalized

Time-Reversible Model

A T G C

A — apT bpG cpC

T apA — dpG epC

G bpA dpT — f pC

C cpA epT fpG —

Nucleotides in rows are substituted by nucleotides in columns.

pi is the stationary frequency of i nucleotide, for i 2 fA‚ T‚ G‚ Cg,
whereas a to f are rate parameters.
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2. METHODS OF GENERATING CANDIDATE SOLUTIONS

2.1. Generation of substitution-rate matrices in the MGTR class

The GTR approach is commonly used to model the processes of nucleotide substitutions and assumes the

time reversibility of Markov processes. The basic GTR model is based directly on the GTR substitution-rate

matrix presented in Table 1. According to the theory of continuous-time Markov processes, we obtained that

MGTR = f~s1 : ~s1 = (a‚ b‚ c‚ d‚ e‚ f )‚ a‚ b‚ c‚ d‚ e‚ f > 0g (1)

is a class of six-dimensional vectors of parameters, which uniquely define a time-reversible process of

nucleotide substitutions with a fixed stationary distribution p. It is evident that in this simple case, we can

incorporate evolutionary operators, that is, mutation and crossover, which are commonly used in opti-

mization problems in which the potential search space is a subset of n-dimensional Euclidean space. The

mutation operator can be realized by a random shift of a vector ~s1 according to the normal distribution

N(0‚ r). Moreover, MGTR is a convex cone and therefore, we are able to adopt each crossover operator,

which produces an offspring as a linear combination of its parents, with positive coefficients. For

example, it is possible to use here a modified version of the Linear Crossover (Schlierkamp-Voosen and

Muhlenbein, 1994).

2.2. Generation of substitution-rate matrices in the MGTRs class

The MGTR class contains many potential solutions that are represented by substitution-rate matrices with

a fixed stationary distribution p and without any additional assumptions on eigenvalues. However, there

may be a need to restrict the search space to a subset of matrices that are characterized by special

properties, for example, a fixed speed of convergence to the stationary distribution. It may be useful to

compare the reference empirical matrices characteristic for real genomes with the optimal matrices found in

the search space (B1a _zej et al., 2015). In this case, the theoretical alternatives should possess not only the

same nucleotide stationary distribution but also the same speed of convergence.

To solve this problem, it is necessary to construct a new representation of a candidate solution, in which

we include some additional assumptions from the theory of Markov processes. First of all, we transform the

substitution-rate matrix Q into a transition probability matrix P = fpijg by adopting the uniformization

method (Tijms, 2003). As a result, we obtain a matrix P that is defined in the following way:

pij =
qij

q
‚ i 6¼ j

1 - jqiij
q

‚ i = j

(
(2)

where q =
P

i2A‚ T‚ G‚ C jqiij. In general, the uniformization procedure is used to transform the original

continuous-time Markov process with nonidentical leaving rates into an equivalent of a stochastic process, in

which the transition epoch is generated by a suitable Poisson process with a fixed rate. In consequence, we

were able to apply the following representation of a discrete time-reversible Markov chain (Brémaud, 1998):

P = ALA - 1: (3)

Table 2. The Nucleotide Substitution-Rate

Matrix Q of the UNREST Model

A T G C

A — qAT qAG qAC

T qTA — qTG qTC

G qGA qGT — qGC

C qCA qCT qCG —

Nucleotides in rows are substituted by nucleotides in columns.

qij is a substitution rate from nucleotide i to j. For fixed stationary

distribution p, the equations pQ = 0 under the constraints
P

i pi = 1

are fulfilled.

UNREST, unrestricted.
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This is a unique spectral decomposition of the transition probability matrix P, where A is an orthogonal

matrix, in which the rows consist of right eigenvectors, whereas A - 1 is the transpose of A (A - 1 = AT ) and its

columns are composed of left eigenvectors; L is a diagonal matrix with real eigenvalues on its diagonal. It

is clear that all eigenvalues are the solutions of the characteristic equation and have many interesting

probabilistic interpretations. The maximum of the eigenvalues is equal to 1 and corresponds to the sta-

tionary distribution p, that is, the left eigenvector. Furthermore, the second largest eigenvalue gives an

upper bound on the speed of convergence of the Markov process to the stationary distribution, generated by

the transition probability matrix P, which is a direct consequence of the Perron-Frobenius theorem. These

properties are sufficient to define a convenient representation of a candidate solution from the subclass of

MGTR. Therefore, we assume that every individual, that is, the transition probability matrix P is expressed

by an equation:

P = ALATP: (4)

In this representation, we have that the matrix

A =

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z4

1 x4 y4 z4

2
664

3
775: (5)

It is a real-valued and an orthogonal matrix with three column vectors ~x = (x1‚ x2‚ x3), ~y = (y1‚ y2‚ y3),

~z = (z1‚ z2‚ z3), whereas

L =

1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4

2
664

3
775 (6)

is the matrix with eigenvalues on its diagonal, where the first and the second row are fixed. P is a diagonal

matrix with p = (pA‚ pT ‚ pG‚ pC) on its diagonal. Moreover, A is orthogonal in terms of the stationary

distribution, that is, A - 1 = ATP. It is evident that the Equation (4) is a special case of Equation (3) and is

very useful in generating at random a sample of matrices with desired properties. As a consequence, it is

possible to explore a specific subclass of time-reversible Markov processes with a fixed stationary distri-

bution p, because each candidate solution could be expressed as a set of vectors:

MGTRs = ff~x‚~y‚~z‚ (k2‚ k2‚ k3)gg‚ (7)

where (k2‚ k2‚ k3) is a vector of eigenvalues. The following assumptions on eigenvalues (k2‚ k2‚ k3) were

considered (B1a _zej et al., 2015): (a) all eigenvalues are exactly the same as in the reference process; (b)

only the second eigenvalue is the same as in the reference process. These two constraints guarantee that the

generated stochastic processes converge to the fixed stationary distribution with the same speed.

To generate at random a candidate solution, we need to create three independent eigenvectors~x‚ ~y‚ ~z. It

can be realized by drawing three points from the unit sphere. Next, they are orthogonalized according to the

Gramm-Schmidt orthogonalization procedure, whereas the three eigenvalues k1‚ k2, and k3 are generated at

random according to one of the assumptions on the eigenvalues.

As a mutation operator, a random shift of eigenvectors ~x,~y, and~z can be applied and/or eigenvalues can

be drawn from the normal distribution N(0‚ r). Every individual that is modified by the mutation operator

must be orthogonalized again and it should be checked whether the structure of the candidate-solution

[Eq. (3)] is preserved. However, in this case, it is not clear as to how to modify the representation [Eq. (3)]

to effectively describe a crossover operator in such a way that selected individuals can exchange partial

information.

2.3. Generation of substitution-rate matrices in the MUN class

The time-reversibility assumption in the process of nucleotide substitution is generally accepted in many

phylogenetic studies. It is assumed that this property is a good representation of the real substitution

process and facilitates mathematical operations on matrices describing this process, although no biological
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justification for the time-reversibility models was proposed (Felsenstein, 2004; Yang, 2006). However,

some studies show that the time-reversibility causes a problem in modeling synonymous codon usage

(B1a _zej et al., 2017). It implies that this assumption is not always a good approximation of biological

processes. Therefore, it seems reasonable to develop a new procedure under more general assumptions,

which will be an extension of methods presented in the previous sections.

The UNREST model is the most general, because it does not assume time reversibility in the process of

nucleotide substitution, which is imposed on others. The representation of each candidate solution that

belongs to the MUN class is based on the structure of the substitution-rate matrix defined in Table 2. In

addition, every stationary and continuous-time Markov process fulfills the following balance equation

(Brémaud, 1998):

pQ = 0 (8)

under the constraint X
i2fA‚ T‚ G‚ Cg

pi = 1:

The fundamental step in this investigation is to reformulate [Eq. (8)] into the system of three equations:

VbT = 0‚ (9)

where

VT =

- pA pA 0

- pA 0 pA

- pA 0 0
pT - pT 0

0 - pT pT

0 - pT 0
pG 0 - pG

0 pG - pG

0 0 - pG

pC 0 0

0 pC 0

0 0 - pC

2
666666666666666664

3
777777777777777775

and b 2 R12 is composed of 12 substitution rates of the matrix Q, that is

b = [qAT ‚ qAG‚ qAC‚ qTA‚ qTG‚ qTC‚ qGA‚ qGT ‚ qGC‚ qCA‚ qCT ‚ qCG]:

The set of Equations (9) was obtained by reformulating (8) so that the variables from Equation (8), that

is, p became factors in Equation (9). As a result, we got a homogeneous set of algebraic equations with

infinitely many nontrivial solutions. Moreover, each potential solution is a linear combination of inde-

pendent vectors (base) v1‚ v2‚ . . . ‚ v8‚ v9 2 R12 with coefficients bi‚ i = 1‚ 2‚ . . . ‚ 9. In consequence, every

solution of Equation (9) is of the form:

b = b1v1 + b2v2 + . . . + b9v9: (10)

Therefore, b allows to create the matrix Q and thus, each potential candidate solution could be described

in the following way:

MUN = f~s : ~s = (b1‚ b2‚ . . . ‚ b9)‚ g‚ (11)

where the coefficients b1‚ b2‚ . . . ‚ b9 guarantee a proper representation of the vector b. In other words, the

condition:

qij > 0‚ i 6¼ j (12)

must be fulfilled. Clearly, Equation (11) is a space of vector coefficients related to the solutions [Eq. (10)]

of the Equation (9).
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This general model of nucleotide substitutions needs specific evolutionary operators. From linear

algebra, we get immediately that the solutions of Equation (9) constitute a vector space. Threrefore, the

base coefficients also create a vector space. However, in this case, we have to check the condition [Eq.

(12)], which implies that MUN is just a subset of the whole set of potential coefficients. As a result, we could

define the mutation operator as random changes in the vector of coefficients bi‚ i = 1‚ 2‚ . . . ‚ 9. They are

generated according to the normal distribution N(0‚ r). The crossover generator adopted to this problem

can be a modified version of the Linear Crossover LBGA (Schlierkamp-Voosen and Muhlenbein, 1994). In

short, it produces an offspring, which is a linear combination of its parents in terms of Equations (9) and

(10). Clearly, it is necessary to check the quality of the newly produced offspring at the end of these

procedures, particularly whether the rates [Eq. (12)] are positive.

2.4. The fitness function

The representations of search spaces described earlier can be used for finding a proper solution in various

optimality problems. These problems require to define an appropriate fitness function F, which is necessary

to compare the quality of potential solutions. In the case of the study on the optimality of mutational

pressure, this function should combine several features of protein-coding sequences with properties of the

process of nucleotide substitution. The cost of mutations in these sequences should take into account the

potential differences between amino acids that are coded by mutated codons. The general form of the

fitness function F can be given by the following formula:

F =
X

<k‚ l>2C

p(k)pk!lg(k‚ l)‚ (13)

where C is the set of pairs of codons < k‚ l >, which differ in one codon position and p(k) is a probability of

selecting a given codon k. Moreover, pk!l is a probability of transition from the codon k to l in one

nucleotide substitution. This single change is generated by a uniformized transition probability matrix [Eq.

(2)] calculated for fixed candidate solutions. Finally, g(k‚ l) is a measure of differences between the

properties of the amino acids coded by the codons k and l, respectively (which is called a selection factor).

Various representations of the function g can be applied (B1a _zej et al., 2013, 2015), for example:

g(k‚ l) = 0 if k and l code the same amino acid

1 if k and l code various amino acids:

�
(14)

The case Equation (13) is, in fact, the sum of probabilities of nonsynonymous substitutions, which are

calculated from the codon frequencies and a given mutational matrix. It is also possible to use:

g(k‚ l) = 0 if k and l code the same amino acid

prkl if prkl 2 [0‚ 1] and k and l code various amino acids‚

�
(15)

where prkl is a probability that the transition from the codon k to l will be accepted by a selection process.

Moreover, using a numerical description of amino acid properties, the following selection factor can be

proposed:

g(k‚ l) = [A(k) - A(l)]2‚ (16)

which is a squared difference between the properties of the amino acids described by a function A and

coded by the codons k and l, respectively. In consequence, under the assumption Equation (16), the function

F has an interesting interpretation, because it is a mean value of amino acids substitution costs.

3. APPLICABILITY

The methods presented in this work can be successfully applied to many biologically inspired problems.

The general representation MGTR of a candidate solution can be used to solve the problem of finding

stochastic mutational processes, which together with selection minimize or maximize the evolutionary cost

of generated changes in protein-coding sequences (B1a _zej et al., 2013). The impact of these processes was

investigated on real genes present in the genome of bacteria Borrelia burgdorferii. The optimal mutational
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pressures were expressed as transition probability matrices (see Table 3 for example). They were found by

a searching algorithm, which was based on the Evolutionary Strategies (ES) technique. Each candidate

solution belonged to the class [Eq. (1)], whereas the mutation and crossover operators were fitted to the

MGTR representation.

In contrast to the general results presented (B1a _zej et al., 2013), the representation MGTRs was used in

more detailed comparisons between empirical processes and their corresponding optimized alternatives

(B1a _zej et al., 2015). Seven different mutational pressures deduced for different bacterial genomes were

studied (see Table 4 for example). Particularly, the representation [Eq. (7)] appeared very useful in the

problem of searching for an optimal solution under additional assumptions on the speed of convergence to

the stationarity. What is more, to evaluate the quality of a given solution, B1a _zej et al. (2015) applied

different measures of amino acids properties. They were used to establish selected fitness functions in

which the function g(k‚ l) was of the form Equation (16). All the optimal solutions were found by using a

searching algorithm based on the ES approach. This method worked on MGTRs search space representation

under the conditions defined in the previous sections. In Table 3, we presented an example of an optimal

stochastic process, which was established by the searching algorithm. The described studies using MGTR

and MGTRs representations showed that empirical mutational pressures in bacterial genomes are rather

optimized to minimize cost of amino acid replacements, simultaneously allowing for some variation in the

protein-coding sequences (Table 5).

The MUN model is the most general representation of a stochastic process considered in this work.

Therefore, it could be applied in wider aspects of possible optimization problems in comparison to the

MGTR and MGTRs models. The MUN representation was used by B1a _zej et al. (2017) to find nucleotide

substitution matrices that maximized the differences in usage of synonymous codons together with the

selection described by Equation (15). They showed that the MUN model allows to include all possible

mutation-selection effects acting on the synonymous codons usage in the protein-coding sequence, which is

impossible under the MGTR assumption.

Table 3. The Transition Probability Matrix P,

Which Is a Representation of the Optimal

Mutational Pressure in Terms of Minimizing

the Probability of Nonsynonymous

Nucleotide Substitutions

A T G C

A 0.9978 0.0001 0.0005 0.0017

T 0.0000 0.8806 0.0000 0.1193

G 0.0011 0.0002 0.9982 0.0006

C 0.0091 0.9896 0.0013 0.0000

The selection strength was calculated according to the formula

[Eq. (13)], in which codon frequencies p were evaluated from

bacteria Borrelia burgdorferii genes and g(k‚ l) function was of

the form [Eq. (14)].

Table 4. The Empirical Transition Probability

Matrix Calculated for the Leading DNA

Strand from Borrelia burgdorferii Genome

(Kowalczuk et al., 2001)

A T G C

A 0.4924 0.2713 0.1762 0.0601

T 0.1731 0.6428 0.0918 0.0924

G 0.4323 0.3058 0.2231 0.0388

C 0.1855 0.6904 0.1241 0.0000

It describes the stationary stochastic process with stationary

distribution: pA = 0:3167, pT = 0:4876, pG = 0:1370, pC = 0:0588.
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The derived representations of search spaces can be applied in problems, which are described by

continuous-time, homogeneous, and stationary Markov processes. In particular, they can be used in finding

nucleotide substitution matrices that fulfill appropriate properties, for example, minimize or maximize

consequences of substitution or compositional differences at the nucleotide, codon, and amino acid levels.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Archetti, M. 2004. Codon usage bias and mutation constraints reduce the level of error minimization of the genetic

code. J. Mol. Evol. 59, 258–266.

Bedau, M.A., and Packard, N.H. 2003. Evolution of evolvability via adaptation of mutation rates. Biosystems 69, 143–162.
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