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Abstract

We present results of the analysis of the genetic background of quantitative traits related to alco-
holism. We used a mixed linear model with random polygenic effects to estimate genetic correlations
between some of the quantitative traits presumably related to alcoholism and to describe the ge-
netic background for two of those traits: the natural logarithm of the maximal number of drinks
in a 24 hour period [ln(maxdrinks)]and one of the electrophysiological traits, ttth3. We used SNPs
from Illumina to perform genome scans based on the modified PDT test and identify single genes
influencing these traits. We also verified chosen SNPs with the likelihood ratio statistic in the mixed
linear model. Apart from looking for genes with significant additive effects we used the modified
version of Bayesian Information Criterion proposed in [1] to look for significant epistatic effects.
We localized several interesting genome regions which may host genes related to alcoholism but the
main conclusion of our research is that the heritability of the analyzed traits can be attributed to a
large number of genes with small genetic effects rather than to a few strong quantitative trait loci.

Background

In our research we used the data provided by the Collaborative Study on the Genetics of Alcoholism
and analyzed the genetic background of some quantitative traits related to alcoholism. Since the
genetic background of alcoholism has not yet been extensively studied and a firm definition of
a quantitative assessment of alcoholism is not available one of main goals of our research was
to estimate the heritability and genetic correlations between some quantitative traits presumably
related to alcoholism. For this purpose we used mixed linear models, which are commonly used to
describe the inheritance of quantitative traits in humans, animals and plants (see eg. [2] and [3]).
Mixed models allow information on genetic relations to be directly incorporated into the model by
using a random polygenic effect, whose covariance matrix expresses coancestry between individuals.
This approach allows the model to account for both the influence of many genes with small effects
as well as effects of single quantitative trait loci (QTL). In the second part of our research we
used two dimensional genome scans based on fixed effects linear models to localize genes related to
alcoholism. The main advantage of using such two dimensional scans is the possibility of detecting
epistatic effects. Our research suggests that the heritability of alcoholism can be explained by an
influence and interactions of many genes with a relatively small individual effects.

Methods

Estimating genetic and residual correlations between traits: The natural logarithm of
the maximal number of drinks in a 24 hour period [ln(maxdrinks)] was chosen as the quantitative
measure of alcohol dependence. To compute ln(maxdrinks) we set maxdrinks=0.1 for all individuals
for whom a true value of maxdrinks was equal to 0. Additionally we analyzed electrophysiological
measurements from the Visual Oddball Experiment. Variables ttth and tttd contain data extracetd
from the target case of the experiment and correspond to the ’late’ time window at 300 to 700 ms
following stimulus presentation. The theta band power was in range between 3 to 7 Hz for ttth
and 1 to 2.5 Hz for tttd. Variables ntth contain data from the non-target case of the experiment
and correspond to the ’early’ time window (100 to 300 ms after stimulus presentation) and the
theta band power between 3 and 7 Hz. Each measurement was taken at four locations described by
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consecutive numbers 1-4 and related to a far frontal left side channel and frontal, central and parietal
midline channels correspondingly. To investigate which of the electrophysiological phenotypes can
be used as an alternative measure of alcohol dependence we estimated polygenic and residual
correlations between selected traits using the following multivariate mixed model:

y = Xβ + Zα+ ε . (1)

Here yn×p = [y1, . . . , yp] is a matrix of phenotypic values for p traits, β = [β1, . . . , βp] is a matrix
of fixed effects for p traits, with βi being a column vector of coeficients corresponding to different
values of qualitative predictors comprising sex, smoker status and ethnicity, αn×p = [α1, . . . , αp]
is a matrix of random additive polygenic effects for each of n individuals and p traits, εn×p is a
matrix of random errors, and X, and Z are corresponding design matrices. The covariance structure
corresponding to the model (1) is given by

V ar[α, ε] =
[

G 0
0 R

]
with

G =

 Gσ2
α1

. . . Gσα1,p

. . . . . . . . .
Gσα1,p . . . Gσ2

αp

 ,

where G represents polygenic relationships among individuals expressed by a standard numerator
relationship matrix based on the information on coancestry between all available individuals (for
definition of G see e.g. [3]) and σαi,j is an additive genetic (co)variance for traits i and j attributed
to polygenes. The matrix R is given by equation

R =

 Iσ2
ε1 . . . Iσε1,p

. . . . . . . . .
Iσε1,p . . . Iσ2

εp

 ,

where I is the identity matrix and σεi,j is a residual (co)variance for traits i and j.
To estimate parameters of the model (1) we maximized the restricted maximum likelihood

function (REML) defined in [4] using the average information algorithm (AI) of [2].
We considered three following sets of traits:

1) y=[ln(maxdrinks) ttth1 ttth2 ttth3 ttth4]
2) y=[ln(maxdrinks) ttdt1 ttdt2 ttdt3 ttdt4]
3) y=[ln(maxdrinks) ntth1 ntth2 ntth3 ntth4].

Estimating heritability and testing impact of polygenes: A univariate version of model
(1) was used to estimate the proportion of observed trait variation, which is due to polygenes (i.e.
heritability; h2):

h2 =
σ2
α

σ2
α + σ2

ε

.

Furthermore, we use the univariate model (1) to test the hypothesis that the polygenic effect
has no influence on the trait variation, i.e. σ2

α = 0 vs σ2
α > 0. For this aim we use the likelihood
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ratio statistic:

λ = −2 ln
L(M0)
L(M1)

. (2)

Here L(M1) and L(M0) are the maximum values of likelihood functions underlying the unrestricted
model (1) and a more parsimonious model, where no polygenic effect is assumed.

Genome scan based on the mixed model: To identify single genes influencing two chosen
traits, ln(maxdrinks) and tth3, we performed genome scans based on the modified PDT statistic
of [5]. Following the notation of [6] we define:

PDT =
(
∑N

i=1 Si)
2∑N

i=1(S2
i )

, (3)

where Si = [xi − E(xi)][yi − E(yi)], xi is the observed number of SNP allele ”1”, E(xi) is the
expected number of SNP allele ”1” for offspring based on parental SNP genotypes, yi is the trait
value and E(yi) is the the trait value predicted by the above mixed model (1). In the first step
we have chosen 20 SNPs yielding the highest value of the PDT statistic. These SNPs were later
verified with the likelihood ratio statistic λ based on the likelihood of the model (1) supplied with
an additional qualitative effect corresponding to possible genotypes of a given SNP.

Genome scan based on the modified version of Bayesian Information Criterion: To
further investigate the genetic background of ln(maxdrinks) and ttth3 we performed a genome scan
based on the modified version of Bayesian Information Criterion (mBIC) proposed in [1] and [7]. In
brief, the method relies on choosing the multiple regression (or ANOVA) model which best describes
the trait. The predictor variables corresponding to additive, dominance and epistatic effects are
defined by SNPs genotypes as in [8]. To decide which terms should be included in the model a
sequence of two dimensional (i.e. simultaneously including two SNPs) genome scans is performed.
The modified version of Bayesian Information Criterion is used to decide on the number of terms
included. This criterion suggests choosing the model for which

mBIC = n logRSS + (p+ q) log n+ 2pL+ 2qU , (4)

obtains a minimum. Here RSS is the residual sum of squares from regression, n is the sample
size, p is the number of additive and dominance terms present in the model, q is the number of
interaction terms, L is the penalty for including an additive or a dominance term and U is the
penalty for including an interaction term. In our experiment we used 4720 SNPs and in such case
formulas from [9] suggest using penalties L = 8.35 and U = 16.55. These additional penalties take
into account multiplicity testing problem and guarantee that under standard model assumptions
and the considered sample sizes (n ≥ 700) the probability of the type I error does not exceed 0.03.

We used mBIC to analyze residuals resulting from fitting linear models describing the depen-
dence of ttth3 and ln(maxdrinks) on two different sets of covariates. In the first step we used the
same set of covariates as the one used for the mixed model, i.e. sex, ethnicity and a smoker status.
In the second analysis we replaced the variable smoker status with an age at interview. We verified
our findings with the repeated analysis based on 700 randomly chosen individuals.
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Results

Genetic correlations between selected traits: We observed that traits ttth1, ttth2 and
ttth3 have relatively strong negative genetic correlations with ln(maxdrinks) (rαi,j=-0.2, -0.34,
-0.46 respectively) , while traits ttdt1, ttdt2 and ttdt3 are genetically positively correlated with
ln(maxdrinks) (rαi,j=0.38, 0.32, 0.42 respectively). Traits ntth1, ntth2 and ntth3 are not geneti-
cally correlated with ln(maxdrinks) (rαi,j=0.03, -0.09, -0.02 respectively). Our analysis shows also
that for each of the considered electrophysiological phenotypes the observations taken at far frontal
left side channel, frontal midline channel and central midline channel are strongly correlated, both
genetically and residually. The observations taken at parietal midline channel exhibit much smaller
correlation with measurements taken at other locations and in case of ttth and ttdt show also much
smaller correlation (both genetical and residual) with ln(maxdrinks). Based on the estimated cor-
relations we decided to use ttth3 as the second quantitative trait in further analysis since it has
the strongest genetic correlation and relatively low residual correlation with ln(maxdrinks).

Heritability and significance of polygenic effects: For ln(maxdrinks) the polygenic and
residual variances estimated by the univariate model (1) amount respectively to 0.145 and 0.833,
which result in a relatively low heritability of 0.148. Corresponding estimates for ttth3 are: σ̂2

α =
0.255 , σ̂2

ε = 0.462, indicating a moderate heritability of 0.356.
Genome scan based on PDT: In the table below we give results for some SNPs which have

relatively small p-values for both PDT and likelihood ratio statistics.
HERE TABLE 1.

The reported p-values both for λ and PDT are much smaller for ttth3 than for ln(maxdrinks).
Thus the evidence of single gene trait determination through QTL is much stronger for ttth3. The
p-values observed for ln(maxdrinks) only allow vague speculation about the possible impact of
selected genome sites on the trait.

Genome scans based on mBIC : When using the covariates as in the mixed model above
mBIC finds no significant effects. This agrees with the reported results of single genome scans since
none of the signals found by PDT is significant when we adjust for multiple testing. Replacing the
smoker status covariate by the age at interview dramatically changes the results of mBIC scans.
The corresponding scan for ttth3 finds a significant additive effect at SNP rs1019374 on chromosome
3. The p-values corresponding to this effect in a simple regression model are equal to 2.29 · 10−7

for the full set of data and to 4.82 ·10−6 for the randomly chosen subsample of 700 individuals. For
ln(maxdrinks) we obtain 13 significant additive signals and 27 significant epistatic effects scattered
over all chromosomes with the exception of chromosomes 1, 16, 21 and 22. Of these signals only
two, on chromosomes 3 and 10, are strong enough to exceed mBIC threshold for the smaller sample
of 700 individuals. These signals, as well as two strongest interactions of the additive-additive type
and the corresponding p-values are reported in Table 2. All other signals detected by mBIC in
the large sample, together with the corresponding p-values in both samples are reported on the
webpage http://neuron.im.pwr.wroc.pl/cogito/GAW.html.

HERE TABLE 2
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Discussion

We investigated the genetic background of quantitative traits related to alcoholism using several
different methods differing in parameterisation of the genetic components (only polygenes, poly-
genes and a single QTL, multiple QTL with interactions). The estimated heritabilities based on
polygenic mixed models did not differ between uni- and multivariate approach indicating that vari-
ances and covariances of traits can be well separated by our multivariate models. On the other
hand, we observed that the choice of covariates has a big impact on results of genome scans. In
particular, covariate age at interview explained large part of variation of ln(maxdrinks) and helped
to increase the power of detection of genetic effects.

Conclusions

Although all of the quantitative traits analyzed are to some extend determined genetically, they
considerably differ in the proportion of genetic variation within the observed (phenotypic) vari-
ability. The results of our analysis suggest that among various electrophysiological measurements
taken, only a few can be considered as good indicators of alcoholism. We also conclude that the
genetic component of the variation of the analyzed traits is mainly determined by many interacting
genes with relatively small effects, rather than by a few strong QTLs.
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Tables

Table 1 Results of genome scans based on the PDT and the likelihood ratio statistics.

ln(maxdrinks) ttth3
nominal p-value nominal p-value

SNP PDT λ SNP PDT λ

rs624228(chr3) 0.0033 0.086 rs1022092(chr6) 0.0001 0.0004
rs1549114(chr3) 0.014 0.079 rs716493(chr1) 0.0006 0.0004
rs1989749(chr14) 0.015 0.011 rs240153(chr6) 0.0007 0.00003

Table 2 Results of genome scans for ln(maxdrinks) based on mBIC. p1 and p2 are p-values
in the large and the small sample correspondingly.

additive interactions
SNP p1 p2 SNPs p1 p2

rs224136 (chr10) 6 · 8−10 1.2 · 10−6 rs17114 (chr3)-
rs891674 (chr4) 6 · 10−12 5.1 · 10−8

rs765695 (chr3) 4.7 · 10−7 2.9 · 10−7 rs2137289 (chr18)-
rs2377473 (chr20) 1 · 10−12 4.6 · 8−10
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