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ABSTRACT

Amyloids are proteins associated with the number of clinical disorders (e.g., Alzheimer's, Creutzfeldt-
Jakob's and Huntington's diseases). Despite their diversity, all amyloid proteins can undergo aggregation
initiated by 6- to 15-residue segments, called hot spots. To find the patterns defining the hot-
spots, we trained predictors of amyloidogenicity, using n-grams and random forest classifiers, based
on data collected in the AmylLoad database. Only the most informative n-grams, selected by our
Quick Permutation Test, were considered. Since the amyloidogenicity may not depend on the exact
sequence of amino acids but on more general properties of amino acids, we tested 524,284 reduced
amino acid alphabets of different lengths (three to six letters) to find the alphabet providing the
best performance in cross-validation. The predictor based on this alphabet, called AmyloGram, was
benchmarked against the most popular tools for the detection of amyloid peptides using an external
data set and obtained the highest values of performance measures (AUC: 0.90, MCC: 0.63). Our
results showed sequential patterns in the amyloids, which are strongly correlated with hydrophobicity, a
tendency to form fB-sheets and rigidity of amino acid residues. Among the most informative n-grams of
AmyloGram we identified 15 that were already confirmed experimentally. AmyloGram is available as a
web-server: www.smorfland.uni.wroc.pl/amylogram/. The code and results are publicly available at:
www.github.com /michbur/prediction_amyloidogenicity_ngram/.
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1 INTRODUCTION

Amyloid aggregates have been observed in tissues of people suffering from neurodegenerative
diseases, such as: Alzheimer’s, Parkinson’s, Huntington’s and amyotrophic lateral sclerosis, as well
as many other conditions (Vidal and Ghetti, 2011). These aggregates were also detected in disorders
other than neurological, for example in diabetes of type 2 or certain types of a cataract. Cells in
tissues with amyloid oligomers exhibit very high mortality. However, the exact mechanisms of the
cytotoxicity have not been discovered. Amyloids are resistant to activity of proteolytic enzymes and
chemical compounds due to the specific and highly ordered structure of their steric zipper. However,
some strategies to prevent amyloid formation have been proposed, e.g. Hird and Lendel (2012).

The aggregation occurs when a cell environment fosters the partial unfolding of protein chains
or their fragmentation in such a way that the parts prone to joining with similar protein fragments
become exposed. The formation of the non-native partially unfolded conformation is required to start
the aggregation, presumably by enabling specific intermolecular interactions including electrostatic
attraction, hydrogen bonding and hydrophobic contacts (Chaturvedi et al., 2016).

Initially, the resulting molecules form clusters consisting of a few elements, which are called
oligomers. Next, they grow into larger aggregates. The aggregation of proteins or their fragments
may lead to amorphous (unstructured) clusters or amyloid (highly ordered) unbranched fibrils.
Independently of the protein sequence and its original structure, aggregates always display a common
cross-f structure (Sawaya et al., 2007). The distinctive structure of the steric zipper enables the
selective detection of amyloids from amorphous aggregates using either a variety of microscopic
techniques or fluorescence of probes with which they form compounds.
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Currently, it is believed that short peptide sequences of amyloidogenic properties, called hot
spots, are responsible for the aggregation of amyloid proteins. Previous studies have suggested
that amyloidogenic fragments may have regular characteristics, not only with regard to averaged
physicochemical properties of their amino acids, but also the order of amino acids in the sequence.

It is important to distinguish between amyloidogenic and amyloid (or amyloidic) peptides,
because only the former are capable of initiating the process of aggregation. The latter may consist
of amyloidogenic hot-spots as well as other regions that are not directly responsible for the onset of
aggregation process, although involved in the final aggregate. Several computational approaches have
been proposed to model and predict both kinds of regions. Physics- and chemistry-based models
used in FoldAmyloid (Garbuzynskiy et al., 2010) and PASTA2 (Walsh et al., 2014) utilize the density
of the protein contact sites. Statistical approaches include production of frequency profiles, such as
the WALTZ method (Maurer-Stroh et al., 2010) and machine learning methods, for example those
developed in our group (Gasior and Kotulska, 2014) and a novel predictor APPNN based on neural
networks (Familia et al., 2015).

The aim of our study is to automatically generate thousands of created hot spot models, select
from them the most appropriate one and from its analysis gain a new insight into the mechanism of
amyloidogenicity. To do so, we combined n-gram analysis with the reduction of amino acid alphabet.

In bioinformatics, n-grams (k-mers) are continuous or discontinuous sequences of n elements.
Employed as a feature extraction method, n-grams are widely used in various analyses of biological
sequences. Our choice of n-grams was driven by their highly interpretable nature. This is a valuable
feature because we are interested in identification of motifs that are most relevant to amyloidogenic
properties of peptides.

Several studies highlighted that three-dimensional protein structure depends not only on the exact
sequence of amino acids but also on their general physicochemical properties. Hence, a reduced
amino acid alphabet (encoding), which represents certain subgroups of amino acids, can still retain
the information about the protein folding (Murphy et al., 2000). Since amyloid aggregates, especially
their hot spot regions, have very specific spatial organization, we investigated if these regions can
be described by a shorter amino acid alphabet. Hence, we created multiple encodings based on the
combinations of various physicochemical properties that might be associated with amyloidogenicity.

To discover amino acid patterns specific for amyloidogenicity, we based our analysis on n-grams,
continuous or discontinuous sequences of length n drawn from the encoded peptides. The extraction
of n-grams allows the detection of more elaborate motifs, but creates very large feature spaces.
Henceforth, we used a novel feature selection algorithm, Quick Permutation Test (QuiPT), to select
the most informative n-grams.

We used selected n-grams to train a predictor based on the random forest method (Breiman, 2001)
to discriminate between amyloidogenic and non-amyloidogenic peptides. We trained the classifier for
several iterations on peptides of varying lengths to identify the optimal number of residues which
include the information about the occurrence or absence of a hot spot. In the cross-validation setup, we
found the encoding associated with the best-performing classifier and its set of informative n-grams.
Finally, we benchmarked our best-performing classifier, AmyloGram, on an external data set against
state-of-the- art software tools for prediction of amyloid or amyloidogenic regions.

2 METHODS

2.1 Data set

The data used in the study was extracted from AmyLoad data base (Wozniak and Kotulska, 2015).

We obtained 421 amyloid peptides and 1044 non-amyloid peptides (1465 sequences in total).
Sequences shorter than six and longer than 25 amino acid residues (i.e., 8 and 27 sequences,

respectively) were removed from the set. The former were too short to be processed in the devised

n-gram analysis framework and the latter were too diversified and rare, hampering the proper analysis.
In total, the final data set contained 1430 peptides: 397 amyloid and 1033 non-amyloid sequences.

2.2 Encodings of amino acids

The amyloidogenicity of a given peptide may not depend on the exact sequence of amino acids but on
their more general properties. To verify this hypothesis, we handpicked 20 different measures from
AAlndex data base (Kawashima et al., 2008) describing features important in the amyloidogenicity,
such as: size of residues, hydrophobicity, solvent surface area, frequency in f3-sheets and contactivity.
We preferred more accurate measures introduced after 1980. The set of selected physicochemical
properties was enriched by six measures representing amino acid contact site propensities Wozniak
and Kotulska (2014). This gave us 26 features.
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Figure 1. The scheme of n-gram extraction from studied peptide sequences. 1. Extraction of
overlapping hexamers from peptides with known amyloidogenicity status. 2. Clusterization of amino
acids (AA) into groups (ID) using a combination of various physicochemical properties (P1, P2, ...).
3. Encoding amino acids of hexamers into corresponding groups (reduced alphabet). 4. Extraction of
encoded n-grams of different types: continuous with the length from 1 to 3 residues; gapped 2-grams
with a gap of the length from 1 to 3 residues; gapped 3-grams with a single gap between residues (not
all possibilities shown). 5. Selection of informative n-grams using Quick Permutation Test (QuiPT).
6. Cross-validation of encodings using random forest classifier, which is trained on the informative
n-grams.

Since highly correlated measures would create very similar amino acid encodings, we further
reduced the number of properties to 17 by selecting measures with the absolute value of Pearson’s
correlation coefficient smaller than 0.95 (Tab. 2).

Based on that, we created 524,284 encodings with different levels of amino acid alphabet reduction
(three to six groups). Encodings were defined using Ward’s clusterization (Joe H. Ward Jr, 1963),
which was performed on all combinations of the normalized values of 17 selected physicochemical
properties.

The majority of encodings had at least one duplicate. In such a case, only a single representative
was included in the cross-validation. After filtering out the duplicates, we obtained 18,535 unique
amino acid encodings.

We evaluated advantages of the proposed method for amino acids encoding by adding two standard
encodings: (1) ADEGHKNPQRST, C, FY, ILMV, W (Kosiol et al., 2004) and (2) AG, C, DEKN-
PQRST, FILMVWY, H (Melo and Marti-Renom, 2006), to check if the process of amyloidogenicity
does require groupings different from more general amino acid classifications. We also added the full
(unreduced) amino acid alphabet to evaluate potential benefits of the alphabet reduction.

2.3 Training sets
In the initial phase, we extracted overlapping hexamers from all peptides. Each hexamer was tagged
with one of two etiquettes: amyloid (positive, i.e. originating from an amyloid peptide) or non-amyloid
(negative, i.e. originating from a non-amyloid peptide). The etiquette ascribed to the hexamer was
based on the amyloid propensity of its source peptide (Fig. 1, step 1). The hexapeptides constituted
our training dataset.

Note that amyloid and non-amyloid elements of the set are not necessarily amyloidogenic or
non-amyloidogenic, respectively. Hence, assuming that only a short part of the sequence in longer
amyloids is responsible for amyloidogenicity, our method might result in many false positives in
the training data set and in consequence yield inaccurate predictions as it was evaluated elsewhere
(Kotulska and Unold, 2013). To diminish this problem and facilitate the extraction of hot spots,
we restricted the maximum length of peptides in the training data set to fifteen amino acids. This
procedure should eliminate the problem of false negatives and reduce the number of false positives.
Moreover, we expect that this influence of false positives would be naturally eliminated or significantly
reduced from the pattern finally found in further steps of our method. On the other hand, allowing this
ambiguity did not eliminate many hexamers of potentially high amyloidogenicity, whose propensity
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Table 1. Characteristics of training and test data sets used in the cross-validation. All sequences
were derived from AmyLoad database. Training data sets are partially overlapping (e.g. set 6-10
contains also sequences from set 6). Test data sets are always disjointed.

Set Sequence length Status Sequences  Hexamers
6 Non-amyloid 841 841
Amyloid 247 247
- Non-amyloid 964 1412
Training 6-10 Amyloid 312 475
6-15 Non-amyloid 992 1653
Amyloid 342 720
6 Non-amyloid 841 841
Amyloid 247 247
7-10 Non-amyloid 123 571
Test Amyloid 65 228
11-15 Non-amyloid 28 241
) Amyloid 30 245
Non-amyloid 41 571
16-25 Amyloid 55 778

has not been experimentally proven.

To further study the problem of the length of the amyloidogenicity signal, we created three
training sets with the sequences of varying lengths (Tab. 1). The smallest data set contained only the
sequences of length 6. Assuming that the minimum length of the amyloidogenicity signal is the six
residues, we can expect no false positive hexamers in this set. Moreover, we created two training sets
with the progressively more liberal limit of the maximum sequence length (6-10 residues and 6-15
residues).

From each hexamer we extracted encoded n-grams (Fig. 1, step 3 and 4) with the length of 1, 2
and 3. In the case of 2- and 3-grams, we separately analyzed continuous and gapped n-grams. For
2-grams, we considered n-grams with the gap of the length from 1 to 3, whereas the 3-grams could
contain a single gap between the first and the second or the second and the third position. The total
number of n-grams depends on the the length of the encoding and is equal to 120, 260, 480 and 798
for encodings of length 3, 4, 5 and 6, respectively.

2.4 Quick Permutation Test (QuiPT)
The permutation tests are commonly used for filtering important n-grams testing hypothesis that
an occurrence of n-gram and a value of a target attribute are independent. However, they are
computationally expensive and, as a result, they often become one of the most limiting factors in
these kinds of analyses. Therefore, we developed the Quick Permutation Test which effectively filters
n-gram features, without performing a huge number of permutations, using the information gain
(mutual information) as the criterion of the importance of a specific n-gram. We used it to select
the most discriminating n-grams extracted from the hexamers of the training data set. The counts of
n-grams were binarized (1 if n-gram was present, 0 if absent). Only n-grams with the p-value smaller
than 0.05 were assumed to be informative (Fig. 1, step 5).

Let us consider a contingency table for a target y and a feature x. For example, the entry n; g is
the number of cases when the target is 1 and the feature is 0.

target / feature 1 0 total
1 ni1 | mo | Ny
0 no1 | noo | no..
total n.p | n.o n

Under the hypothesis that x an y are independent, the probability of observing such a contingency
table is given by the multinomial distribution in which all probabilities depend only on marginal
distributions. The idea of the permutation test is to reshuffle labels of features and targets, while
keeping the fixed total number of positives for features and targets . When we impose this constraint
on the multinomial distribution, then the probability of occurrence for a given contingency table
depends only on one entry, i.e., 1,1, which is fairly easy to compute. After computing Information
Gain (IG) for each possible value of n1,; € [0,min(n. ;:n, .)], we get the distribution of Information
Gain under the hypothesis that the target and feature are independent. We reject the null hypothesis of

independence, when IG for the tested feature is above the required quantile from the IG distribution.
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Table 2. Selected 17 physicochemical properties used to create amino acid encodings.

Category Property

Contactivity Average flexibility indices (Bhaskaran and Ponnuswamy, 1988)

Contactivity 14 A contact number (Nishikawa and Ooi, 1986)

Contactivity Accessible surface area (Radzicka and Wolfenden, 1988)

Contactivity Buriability (Zhou and Zhou, 2004)

Contactivity Contact frequency in proteins from class 8, cutoff 12 A, separation 5 A (Wozniak and
Kotulska, 2014)

Contactivity Contact frequency in proteins from class 8, cutoff 12 A, separation 15 A (Wozniak and
Kotulska, 2014)

B-frequency Average relative probability of inner
beta-sheet (Kanehisa and Tsong, 1980)

B-frequency Relative frequency in 3-sheet (Prabhakaran, 1990)

B-frequency Thermodynamic f3-sheet propensity (Kim and Berg, 1993)

Hydrophobicity  Hydrophobicity index (Argos et al., 1982)

Hydrophobicity ~ Optimal matching hydrophobicity (Sweet and Eisenberg, 1983)
Hydrophobicity =~ Hydrophobicity-related index (Kidera et al., 1985)
Hydrophobicity ~ Scaled side chain hydrophobicity values (Black and Mould, 1991)

Polarity Polarizability parameter (Charton and Charton, 1982)

Polarity Mean polarity (Radzicka and Wolfenden, 1988)

Size Average volumes of residues (Pontius et al., 1996)

Stability Side-chain contribution to protein stability (kJ/mol) (Takano and Yutani, 2001)

The analytic formula for the distribution enables to perform the permutation test much quicker.
Furthermore, we get exact quantiles even for extreme tails of the distribution, which is not guaranteed
by the random permutations. For example, for the test at the level & = 103, which can often occur
in the corrections for multiple testing, the standard deviation of quantile estimate in the permutation
test, w, is roughly equal to ¢ itself even for a huge number of permutations like m = 108.

In the context of n-gram data, we can further speed up our algorithm. Note that test statistics
depends only on 7. 1, i.e., the number of positive cases in the feature when the target y is common for
testing all n-gram features . Although we test millions of features, there are only a few distributions
that we need to compute because the usual number of positives in n-gram feature is small. We take
advantage of this fact and we compute quantiles only for the handful of distributions. Therefore
complexity of our algorithm is roughly equal to O(n- p) (n and p represents the number of features
and number of positives, respectively).

Lastly, let us point out that QuiPT is very similar to Fisher’s exact test. From the derivation
provided in, e.g. (Lehmann and Romano, 2008), it becomes obvious that QuiPT is a heuristics for an
unsolved problem of a two-tailed Fisher’s exact test. In this heuristics, the extremity of a contingency

table is defined by its information gain.

2.5 Cross-validation of encodings

The encoding yielding classifier with the best ability to correctly predict amyloidogenicity of peptides
was chosen during the five-fold cross-validation. We used random forests as a method for classification
and trained them on the binary n-gram data drawn from the overlapping hexamers, considering only
n-grams selected by QuiPT (Fig. 1, step 6). We grown the forest keeping the default number of tree
(500) and the default number of variables to possibly split in each node (the rounded down square root
of the total number of variables). To speed up the computation, we used the fastest implementation of
random forest in R, the ranger package (Wright and Ziegler, 2015).

A random forest separately considered all hexamers coming from a single peptide. If at least one
hexamer extracted from a peptide was assessed as amyloidogenic, the whole sequence was denoted
as amyloid. Otherwise, the peptide was classified as non-amyloid. Further, results were compared
with the known etiquettes of the peptides to compute the performance measures.

Since a random assignment of peptides to subsamples in a cross-validation may result in the
uneven number of hexamers in the subsamples (longer peptides yield more hexamers than shorter
ones), we repeated the cross-validation fifteen times for each classifier to obtain more precise estimates
of performance measures. We considered three length ranges of sequences in the training sets: 6,
6-10 and 6-15 residues, to evaluate if our classifiers are able to use decision rules extracted from

sequences of a different length to correctly classify longer or shorter sequences.
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To choose the most adequate amino acid encoding, we ranked the values of the Area Under the
receiver operating characteristic Curve (AUC) for each particular classifier (assuming the rank 1 for
the best AUC, rank 2 for the second best AUC and so on) and various ranges of the sequence length in
the test data set. The encoding with the lowest sum of ranks from all sequence length categories was
selected as the best one. For this encoding, we chose the range of the peptides length in the training
set that provided the best AUC in the cross-validation.

2.6 Benchmark of AmyloGram
The best-performing encoding that had been chosen during the cross-validation of encodings was
later used to train AmyloGram, n-gram based predictor of peptide amyloidogenicity.

To compare the performance of AmyloGram and other predictors of amyloids, we used external
data set pep424 (Walsh et al., 2014). Since some peptides were common for both pep424 and
AmyLoad, we removed them from the training data set. After the purification, the training data
set for the benchmark consisted of 269 positive sequences and 746 negative sequences, all longer
than five and shorter than fifteen residues. Aside from the removal of sequences, the training set of
AmyloGram was identical to the training of classifiers during the cross-validation. The parameters of
QuiPT and random forest algorithms were kept the same.

We removed peptides shorter than five amino acids from the pep424 data set as our model of
amyloidogenicity assumes the minimal length of six residues. Such change should not have affect the
outcome of the comparison because only five sequences were eliminated (around 1% of the original
data set). Beside the classifier based on the reduced amino acid alphabet, we also benchmarked three
predictors based on the full 20-amino acid alphabet learned on n-grams extracted from sequences of
different length ranges to separately assess the benefit of using only the n-gram analysis without the
reduction of amino acid alphabet.

3 RESULTS AND DISCUSSION

3.1 Performance of the best encoding

Training peptide length: 6

Test peptide length: 16-25 = —_—s— A] |
Test peptide length: 11-15 - Sy W —
Test peptide length: 7-10 = —m—
Test peptide length: 6 = —EE— —
Training peptide length: 6-10
Test peptide length: 16-25 = —|A_|E—O—
Test peptide length: 11-15 = :D—I—O_
Test pepide length: 7-10 — W Tay .
Test peptide length: 6 = _ED:,_..
Training peptide length: 6-15
Test peptide length: 16-25 = —_— s [ A |
Test peptide length: 11-15 = |
Test peptide length: 7-10 = —E— —
Test peptide length: 6 = —m— —e
Y Y Y Y
0.6 0.7 0.8 0.9
Mean AUC
Encoding Full alphabet B Standard encoding (Melo and Marti-Renom, 2006)

® Best-performing encoding A Standard encoding (Kosiol et al., 2004)

Figure 2. Distribution of mean AUC values of classifiers with various encodings for every possible
combination of training and testing data set including different lengths of sequences. The left and
right hinges of boxes correspond to the 0.25 and 0.75 quartiles. The bar inside the box represents the
median. The gray circles correspond to the encodings with the AUC outside the 0.95 confidence
interval.

The predictor based on the best-performing encoding had the AUC always in the fourth quartile
of all AUC values (Fig. 2). It reached the highest AUC (0.8667) in classification of the shortest
sequences (with the length of 6 residues) when the training set also consisted of the sequences of the
same length. It results most probably from homogeneity in the short peptide set.
The most problematic was the correct prediction of the amyloidogenicity in the longest peptides,
ranging from 16 to 25 residues, when the algorithm was trained also on longer peptides (6-10 and
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6-15 data sets). Here the AUC value did not exceed 0.77. The weakest performance results from
more complex organization of longer amyloidogenic peptides. In such peptides, only a very specific
region of residues might be responsible for the creation of harmful aggregates. In this case, when
overlapping hexamers are extracted, only part of them may carry the true signal of amyloidogenicity
but all of them are marked as amyloids.

We also evaluated classifiers based on the full (i.e., unreduced) amino acid alphabet. In most
cases, they were placed in the fourth quartile of the AUC values (Fig. 2). Nevertheless, they never
predicted amyloidogenicity better than the best classifier based on the reduced alphabet. It implies,
that the amyloidogenicity can be described more accurately using less than 20 amino acids.

Standard encodings included in the cross-validation has often AUC lower than the median. It
implies that although the amyloidogenicity can be described by a reduced amino acid alphabet, such
alphabet must consider only very special physicochemical properties of residues and cannot be too
general.

3.2 The best-performing encoding and important n-grams

0.100 4

5 0075 7

&

2 0.050 4

& .000'.
AT il |I|

0.000 4 IIIIIIIII1IIII USRI I B III 1 III

Amyloid [l Non-amyloid
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Figure 3. The frequency of important n-grams used by the best-performing classifier in amyloid
and non-amyloid sequences. The elements of n-grams are amino acids encoded using the
best-performing reduced amino acid alphabet. A vertical bar represents a gap in a n-gram between its
elements. The frequency was computed using the total number of occurrences divided by the number
of possible n-grams of their length. Dots and triangles denote n-grams occurring in motifs found in
respectively amyloidogenic and non-amyloidogenic sequences (Lopez de la Paz and Serrano, 2004).

In total, eleven combinations of physicochemical properties created the best performing encoding.
Only four features appeared in all combinations: hydrophobicity index (Argos et al., 1982), average
flexibility indices (Bhaskaran and Ponnuswamy, 1988), polarizability parameter (Charton and Charton,
1982) and thermodynamic f3-sheet propensity (Kim and Berg, 1993).

The best encoding chosen in the analysis consists of six amino acid subgroups, which are
characterized by distinct and specific properties: 1) G,2) K,PLR,3) L L, V,4) FE W, Y,5) A,C, H,
M, 6) D, E, N, Q, S, T. The 3rd subgroup contains strongly hydrophobic amino acids. In the 4th
subgroup, the amino acids show also aromatic properties. On the other hand, the most hydrophilic
amino acids are in the 2nd and 6th subgroups . The former includes two strongly basic amino acids,
whereas the latter two acidic and four polar residues. The first subgroup includes only glycine, which
is the smallest amino acid and the most flexible. By average, quite flexible amino acids are also
present in the second subgroup, whereas the least flexible amino acids are in the subgroup 4 and 5.
The glycine has also the lowest propensity to form f3-sheet and the subgroups 3 and 4 largest.

We found 65 n-grams that had obtained p-values smaller than 0.05 in QuiPT test in all repetitions
of cross-validation, regardless of the lengths of sequences in the training set (see Fig. 3). The
frequency of the n-grams was computed for all sequences derived from AmyLoad. The n-grams
typical for amyloidogenic sequences (with the highest frequency of occurrence in amyloids) mostly
include highly hydrophobic amino acids with tendency to form B-structures, from subgroups 3 and 4.
The n-grams occurring frequently in amyloids have often repeats of amino acids from the subgroup 3,
suggesting that the presence of these amino acids in the vicinity might be one of the most effective
predictors of amyloidogenicity. Hydrophobic and aromatic residues from the subgroup 4 are much
less prevalent and never form repeats, but often co-occur with amino acids from the subgroup 3.

n-grams typical of non-amyloidogenic peptides have mostly one or more amino acids belonging to
subgroups 2 or 6. These subgroups include strongly hydrophilic and highly flexible amino acids (K, P,
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R, D, E), which hamper the formation of -structures. We observed that non-amyloidogenic n-grams
usually contain more than one residue from one or two subgroups. Strong breakers of [3-structures as
K, P and R, belonging to the subgroup 2 are never present in amyloidogenic n-grams. In contrast,
amino acids from subgroup 6 may rarely occur at the start or the end of such motifs, but are always
balanced by a one or more hydrophobic residues.

Out of 65 the most informative n-grams, 15 (23%) were also found in the motifs validated
experimentally for amyloidogenic and non-amyloidogenic peptides (L6pez de la Paz and Serrano,
2004). The peptides used in this study are included in the AmyLoad data base, thus n-gram analysis
is at least partially able to find the patterns in validated sequences.

3.3 Benchmark of AmyloGram

Table 3. Results of benchmark on pep424 data set for PASTA2, FoldAmyloid, AmyloGram and its
version learned on n-grams extracted for full amino acid alphabet from the sequences of the lengths
specified in the brackets.

Classifier AUC MCC  Sensitivity ~ Specificity
AmyloGram (6) 0.8856  0.6057 0.6779 0.9037
full alphabet (6) 0.8411 0.5427 0.4966 0.9593

AmyloGram (6-10)  0.8972  0.6307 0.8658 0.7889
full alphabet (6-10) 0.8581  0.5698 0.7517 0.8259
AmyloGram (6-15) 0.8728  0.5420 0.9463 0.6111
full alphabet (6-15) 0.8610 0.5490 0.8188 0.7519
PASTA2 0.8550  0.4291 0.3826 0.9519
FoldAmyloid 0.7351 0.4526 0.7517 0.7185
APPNN 0.8343  0.5823 0.8859 0.7222

The benchmark covered AmyloGram as well as the three peer-reviewed predictors of amyloido-
genicity: physical models included in PASTA2 (Walsh et al., 2014) and FoldAmyloid (Garbuzynskiy
et al., 2010) as well as based on neural networks APPNN (Familia et al., 2015). None of this methods
is using reduced amino acid alphabet, but APPNN codes amino acids using the exact values of their
physicochemical properties. Some known classifiers were not included in the benchmark because
their performance on pep424 data set is already known and lower than the performance of PASTA2
and FoldAmyloid (Walsh et al., 2014).

We analyzed AUC, Matthew’s Correlation Coefficient (MCC), sensitivity and specificity (see
Tab. 3). We used default settings for FoldAmyloid and APPNN. PASTA?2 evaluated the input data
in the "Peptides’ mode, which is advised by its authors for a peptide data. Since PASTA2 does not
return a probability of belonging to a specific category, we normalized the output data to compute the
AUC values. The advised energy threshold (-5) was also normalized in the same manner and used as
cut-off in computations of specificity, sensitivity and MCC. The resulting value of specificity 0.9519
is close to the value provided by its authors (0.95) and assures correctness of our computations. For
other classifiers, including AmyloGram, we assumed a default 0.5 cut-off.

In the case of the studied data set, the n-gram extraction combined with the reduction of the
alphabet appeared efficient enough to produce classifiers able to outperform other published methods.
AmyloGram showed the highest AUC and MCC among all tested classifiers. It should be noted that it
outperformed its counterparts trained on full amino acid alphabet. The reduction of the alphabet not
only reduced number of features simplifying the analysis, but putatively also helped in the generation
of more precise prediction rules. It is important to highlight that AmyloGram is the most balanced
tool among all analyzed classifiers, having the best specificity/sensitivity trade-off, as indicated by
the value of MCC.

The specificity of AmyloGram is lower than the specificity of PASTA2 but it is a consequence
of the usage of the threshold value optimized for 0.95 specificity for the latter. If we assume for the
AmyloGram the same threshold for the specificity, our classifier will still have a higher sensitivity
(0.5518) than PASTA2. Therefore, if we assume such thresholds to both predictors, they will detect
true non-amyloids with the same specificity but AmyloGram will predict more true amyloids.

Two of the three classifiers trained on n-grams using the full alphabet had also AUCs higher
than PASTA?2 and all three were more successful than Fold Amyloid, as well as APPNN. They also
maintained the high specificity as seen previously during cross-validation. However, they generally
performed worse than the classifier based on the reduced amino acid alphabet. It indicates that
the proper formation of amyloid fibrils instead of specific residues requires subsets of amino acids
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with similar physicochemical properties. The reduction of the alphabet removes the unnecessary
information and in consequence simplifies the prediction.

4 CONCLUSION

The description of peptides by short sub-sequences (n-grams) followed by the reduction of the
amino acid alphabet allowed us to create the efficient predictor of amyloidogenic sequences called
AmyloGram. One of the strengths of this approach is its highly interpretable outcome, because our
methods provide explicitly short motifs relevant to amyloidogenicity of peptides and discriminating
amyloids from non-amyloids. 65 important n-grams revealed that mostly alifatic and nonpolar amino
acids (isoleucine, leucine and valine), together with aromatic and also hydrophobic amino acids
(phenylalanine, tyrosine, tryptophan) are good predictors of amyloid peptides.

Polar and hydrophylic residues from group 2 (K, P, R) never occur in n-grams associated with
amyloidogenicity which is confirmed also by the experimental studies. On the contrary, residues from
group 6 (D, E, N, Q, S, T), also polar, are present in both in amyloidogenic and non-amyloidogenic
sequences. It seems plausible, that amino acids belonging to the subgroup 6 are necessary for the
proper formation of some hot spots (hence their terminal position), but must be complemented
by hydrophobic residues from the group 3 or 4. That means that hot spots are not completely
hydrophobic and may contain a fraction of hydrophilic residues with the exclusion for known breakers
of B-structures as lysine, proline and arginine.

Our studies confirm that the most important physicochemical properties associated with amy-
loidogenicity are hydrophobicity and tendency to forming -sheets. We additionally discovered that
amino acid flexibility can also sufficiently discriminate amyloid and non-amyloid peptides. The
aggregating peptides tend to be characterized by more rigid chains. Most importantly, the Amylogram
also showed sequential patterns of the amino acid groups appearing in the amyloids. Among the most
informative n-grams we identified 15 that were already confirmed experimentally.

Our findings can be helpful in understanding the process of amyloid aggregation and recognition
of peptides susceptible to the formation of amyloid aggregates involved in various diseases. Moreover,
they might be employed in the creation of synthetic amyloid peptides. We anticipate that the described
workflow is versatile enough to be applied in other areas of protein function prediction.
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