SILESIAN UNIVERSITY OF TECHNOLOGY

Department for Strength of Materials and Computational Mechanics Department of Fundamentals of Machinery Design

POLISH ASSOCIATION FOR COMPUTATIONAL MECHANICS

METHODS OF ARTIFICIAL INTELLIGENCE

Editors: T. Burczyński, W. Cholewa, W. Moczulski

AI-METH Series, Gliwice, 2004

The papers in this volume have been qualified for publication on the basis of reviews of their draft versions. All papers have been included in the volume exactly as received, on authors' own responsibility.

COPYRIGHT © SILESIAN UNIVERSITY OF TECHNOLOGY

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without the written consent from the copyright holder.

SUGGESTED REFERENCING:

```
@INPROCEEDINGS{key,
                  ....
  author =
                  "",
  title =
                  "",
  pages =
                  "{M}ethods of {A}rtificial {I}ntelligence",
  booktitle =
                  "Burczy\'nski, T. and Cholewa, W. and Moczulski, W.",
  editor =
 editor = Bulc2y hour,
publisher = "AI-METH Series",
vear = "2004",
                 "Gliwice"
  address =
                 "November"
  month =
}
```

ISBN 83-921605-0-9

TYPESETTING

Marek Wyleżoł (materials submitted by authors)

COVER DESIGN

Mirosław Dziewoński

PUBLISHERS

AI-METH Series issued by:

Department for Strength of Materials and Computational Mechanics, Silesian University of Technology Department of Fundamentals of Machinery Design, Silesian University of Technology

http://www.ai-meth.polsl.pl

PROCEDINGS OF THE SYMPOSIUM ON METHODS OF ARTIFICIAL INTELLIGENCE *AI-METH 2004* AND THE WORKSHOP ON KNOWLEDGE ACQUISITION IN MECHANICAL ENGINEERING 17-19 NOVEMBER, GLIWICE, POLAND

UNDER AUSPICES OF:

Ministry of Scientific Research and Information Technology Division IV, Technical Sciences, of the Polish Academy of Sciences

SCIENTIFIC COMMITEE

Marek BALAZIŃSKI	-	École Polytechnique de Montréal, Canada
Adam BORKOWSKI	_	Polish Academy of Sciences, Warsaw, Poland
Tadeusz BURCZYŃSKI	_	Silesian University of Technology, Gliwice, Poland
Wojciech CHOLEWA	-	Silesian University of Technology, Gliwice, Poland
Carlos COTTA	_	University of Málaga, Spain
Vytautas CYRAS	_	Vilnius University, Lithuania
Roman GALAR	_	Wrocław University of Technology, Poland
Avelino J. GONZALEZ	-	University of Central Florida, Orlando, USA
Salvatore GRECO	_	University of Catania, Italy
Zdzisław S. HIPPE	_	University of Information Technology and Management, Rzeszów, Poland
Janusz KACPRZYK		Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
	-	Institute of Fluid Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
Jan KICIŃSKI		
Michał KLEIBER	-	Institute of Fundamental Technological Research, Polish Academy of Sciences
Józef KORBICZ	-	University of Zielona Góra, Poland
Witold Kosiński	-	Polish-Japanese Institute of Information Technologies, Warsaw, Poland
Jan Maciej KOŚCIELNY	-	Warsaw University of Technology, Poland
Jacek ŁĘSKI	-	Silesian University of Technology, Gliwice, Poland
John C. MILES	-	Cardiff University, Wales, UK
Wojciech MOCZULSKI	-	Silesian University of Technology, Gliwice, Poland
Edward NAWARECKI	-	AGH University of Science and Technology, Cracow, Poland
Antoni NIEDERLIŃSKI	-	Silesian University of Technology, Gliwice, Poland
Eugenio Oñate	-	Technical University of Catalonia, Barcelona, Spain
Janusz Orkisz	-	Cracow University of Technology, Poland
Maria E. ORŁOWSKA	-	University of Queensland, Australia
Manolis PAPADRAKAKIS	-	National Technical University, Athens, Greece
Witold PEDRYCZ	-	University of Alberta, Edmonton, Canada
Jacques PERIAUX	-	Pôle Scientifique, Dassault-Aviation/University ParisVI, France
James F. PETERS	-	University of Manitoba, Canada
Jerzy POKOJSKI	-	Warsaw University of Technology, Poland
Bob RANDALL	-	University of New South Wales, Sydney, Australia
Zbigniew RAŚ	-	University of North Carolina, Charlotte, USA
Ryszard ROHATYŃSKI	-	University of Zielona Góra, Poland
Leszek RUTKOWSKI	_	Technical University of Częstochowa, Poland
Robert SCHAEFER	-	Jagiellonian University, Cracow, Poland
Raimar SCHERER	-	Dresden University of Technology, Germany
Ménad SIDAHMED	_	University of Technology, Compiégne, France
Ian SMITH	_	Swiss Federal Institute of Technology, Lausanne, Switzerland
Roman SŁOWIŃSKI		Poznań University of Technology, Poland
Ryszard TADEUSIEWICZ	-	AGH University of Science and Technology, Cracow, Poland
-		
Tadeusz UHL	-	AGH University of Science and Technology, Cracow, Poland
Kurt VARMUZA	-	Vienna University of Technology, Austria
Zenon WASZCZYSZYN	-	Cracow University of Technology, Poland
Jan WĘGLARZ	-	Poznań University of Technology, Poland
Zygmunt WRÓBEL	-	University of Silesia, Katowice, Poland

PROGRAMME COMMITTEE CHAIRS

Tadeusz BURCZYŃSKI	-	Silesian University of Technology, Gliwice, Poland
Wojciech CHOLEWA	-	Silesian University of Technology, Gliwice, Poland
Witold PEDRYCZ	-	University of Alberta, Edmonton, Canada

ORGANIZING COMMITTEE (Silesian University of Technology)

Marek ADAMCZYK Krzysztof CIUPKE Mirosław DZIEWOŃSKI Wojciech MOCZULSKI – chair Ewa OPOKA Piotr PRZYSTAŁKA Krzysztof PSIUK Anna TIMOFIEJCZUK Bronisława ULEJCZYK Ryszard WYCZÓŁKOWSKI Marek WYLEŻOŁ

Contents

Adamczyk M., Moczulski W.: Intelligent walking minirobot operating autonomously in unknown environment	11
Adamska K.: Description of SGA population with the use of continuous H^{l} "brightness" distribution	13
Bartelmus W., Zimroz R.: Application of self-organised network for supporting condition evaluation of gearboxes	15
Bartkowiak A., Cebrat S. Mackiewicz P.: Probabilistic PCA and neural networks in search of representative features for some yeast genome data	17
Bartyś M., Kościelny J. M., Rzepiejewski P.: Fuzzy logic application for fault isolation of actuators	19
Bąchór G., Moczulski W.: Simulator of an intelligent walking minirobot operating autonomously in an unknown environment.	21
Bednarski M.: Example of diagnostic model identification with the use of learning Bayesian networks	23
Behroozi R., Katebi D. S.: Using adaptive logic network for classification and testing the success of ART	25
Beluch W., Burczyński T., Kuś W.: Shape optimization of the cracked mechanical structures using boundary element method and distributed evolutionary algorithm	27
Bhavani S. D., Pujari A. K.: Identifying subnetworks of interval algebra network	29
Bielińska E., Sosnowski K.: Computer database system for speaker recognition	31
Budzyńska L., Susmaga R.: Learning the similarity in preference-ordered domains	33
Burczyński T., Długosz A., Kuś W.: Shape optimization of heat radiators using parallel evolutionary algorithms	35
Burczyński T., Orantek P.: Application of artificail neural network in computational sensitivity analysis	37
Burczyński T., Poteralski A., Kuś W., Orantek P.: Two different types on interpolation functions in optimization of 3-D structures using distributed and sequential evolutionary algorithm	39
Burczyński T., Skrobol A.: Approximation of a boundary-value problem using artificial neural networks	41
Burczyński T., Szczepanik M., Kuś W.: Optimization of stiffeners locations in 2-D structures using distributed evolutionary algorithm	43
Cholewa A.: Representation of sequences of events for purposes of inference in technical diagnostics	45
Cholewa W.: Intelligent assistive devices	47
Chrzanowski P.: Example of a diagnostic model based on belief network	49

Ciupke K., Kuciński P.: Virtual human body model for medical applications	51
Czop P., Miękina L.: Diagnostic of electrical motors based on acoustic measurement and with use of parametric modeling	53
Fidali M.: Limitation of feature value space for evaluation of technical state of machinery	55
Frid W., Knochenhauer M.: Development of a Bayesian belief metwork for a boiling water reactor during fault conditions	57
Galek M.: Expert system to aiding identification of inverse models	59
Gałuszka E., Sokołowski A.: Application of RBF neural network for data integration	61
GhasemZadeh M., Klotz V., Meinel Ch.: Representation and evaluation of QBFs in Prenex-NNF	63
Goldasz I.: Inverse modeling of piston valve components. Evolutionary approach	65
Górniak-Zimroz J., Malewski J.: Application of the Kohonen neural network for classification of mining voids	67
Górski R., Fedeliński P.: Evolutionary shape optimisation of reinforced plates	69
Grela W., Burczyński T.: Evolutionary shape optimisation of a turbine blade shank with APDL language	71
Jankowska A., Kornacki S.: Practical aspects of neural models applications in industry	73
Jarosz P., Burczyński T.: Immune algorithm for multi-modal optimization - numerical tests in intelligent searching	75
Kalita P.: Artery wall modelling – a challenge for computer science and mathematics	77
Krok A., Waszczyszyn Z.: Kalman filtering for nueral prediction of response spectra from mining tremors	79
Kuś W., Burczyński T.: Parallel artificial immune system in optimization of mechanical structures	81
Lefik M., Wojciechowski M.: Artificial neural network as a numerical form of constitutive relationships for hierarchical composites	83
Ławrynowicz A.: A genetic algorithm for job shop scheduling	85
Martinez-Otzeta J.M., Sierra B., Lazkano E., Astigarraga A.: K nearest neighbor boosting of classification trees	87
Martinez-Otzeta J.M., Sierra B., Lazkano E., Astigarraga A.: Knowledge discovery in chess endgames using algebraic methods	89
Masłowska I.: Web search results clustering - new requirements for clustering techniques	91
Mazur D.: Clustering based on genetics algorithm	93
Moczulski W.: Future challenges of knowledge engineering in technical diagnostics	95

Niederliński A.: A modification of the Stanford Certainty Factor Algebra for uncertain expert systems	97
Nikolaidis S.: Case base similarity: some alternative approaches	99
Ogonowski Z., Plaza K.: Mechanical vibrations damping improvement using higher level AI algorithms for a magnetic levitation system	101
Oleksiak J., Ligęza A.: Hierarchical diagnosis of technical systems on the basis of model and expert knowledge	103
Peters J. F., Ramanna S.: Hierarchical behavioral model of a swarmbot	105
Pokojski J.: Intelligent personal assistant and multi-criteria optimization	107
Przybyło A., Achiche S., Balazinski M., Baron L.: Enhancing fuzzy learning with data mining techniques	109
Przystałka P., Moczulski W.: Application of neural networks for diagnostics of dynamic processes	111
Psiuk K.: Identification of bayesian network as a relations model of state changes propagation	112
Raad A., Sidahmed M., Antoni J.: Indicators of cyclostationarity: theory and application to gear fault diagnostic	115
Rogala T.: General concept of virtual sources identification of diagnostic signals	117
Rutkowski J.: Dictionary approach to fault diagnosis in analog circuits	119
Sidahmed M.: Recent developments in rotating machines fault diagnostics	121
Skarka W.: Capturing knowledge through web services based on scenarios during product development	123
Skarka W.: Object-oriented approach to modeling ontology of knowledge base	125
Skarka W., Urbanek G.: Web service for technical manuals	127
Skołud B., Zientek A.: Constraints identification in multi-project scheduling	129
Skupnik D., Ciupke K.: An application of ant algorithm for diagnosis of technical object	131
Sławik D.: Sensitivity evaluation and sensitive feature selection	133
Słoński M.: Prediction of concrete fatigue durability using Bayesian neural networks	135
Słowiński R., Greco S., Mousseau V.: Multiple-criteria ranking with a set of additive utility functions	137
Sokołowski A., Czyszpak T.: Mamdani versus Takagi-Sugeno fuzzy reasoning for machine diagnostics	139
Stefanowski J.: Various aspects of discovering decision rules from medical data	141

Stefanowski J., Kaczmarek M.: Integrating attribute selection and dynamic voting of sub-classifiers to improve accuracy of bagging classifiers.	143
Straszecka E.: Knowledge base tuning in a diagnosis support system	145
Studziński M.: Supporting data mining technology by using Case Base Reasoning	147
Szulim R., Moczulski W.: A method of mining knowledge to aid control of complex industrial processes	149
Tomasik P.: Concept of a system for diagnostics of periodic industrial processes	151
Urbanek G.: Evolutionary identification topographic mappings	153
Urbanek G.: Rough simulator in the inverse models identification	155
Wachla D.: The general concept of a method for discovering the quantitative dynamics	157
Witczak M., Prętki P.: An experimental design strategy for neural networks and its application to fault detection of non-linear systems.	159
Wojtusik J.: Distance measures and trajectories clustering	161
Wyczółkowski R.: Application of cellular automata for traffic light testing	163
Wyleżoł M.: Engineering knowledge bases in verification of virtual models shapes	165
Wysogląd B.: Entropy-based reduction of feature space used for signal classification	167
Xiong X.: Parametric feedforward neural network with fuzzy inputs configured by genetic algorithm	169
Zdziarek J.: Estabilishing kurtosis of the mixtures of two normal distributions	171
Zieniuk E. Kużelewski A.: Modelling of potential boundary problems described by Bézier curves using the fuzzy Parametric Integral Equations System	173

Probabilistic PCA and neural networks in search of representative features for some yeast genome data

Anna Bartkowiak University of Wrocław, Inst. of Computer Science, ul. Przesmyckiego 20, 51-151 Wrocław, Poland e-mail: aba@ii.uni.wroc.pl Stanisław Cebrat and Paweł Mackiewicz

University of Wrocław, Inst. of Genomics and Microbiology, Przybyszewskiego 63/77, 51-148 Wrocław, PL e-mail: {cebrat,pamac}@microb.uni.wroc.pl

Keywords: reduction of dimensionality, yeast genome, latent structure, probabilistic PCA, multi-layer perceptron

1. Introduction, the data and the problem

We consider data characterizing N = 3300 yeast genes, each characterized by d = 13 variables (traits). The data will be in the following called 'the yeast genome' data. A more detailed description of the data may be found in [1, 2] or [6]. The gathered variables have a quite clear interpretation and some of them are fairly dependent. Attempt to simply omit some of the variables is not working: the eventually omitted variables (by use of the *idep* procedure) can not be explained in a satisfactory manner by the retained variables. None the less, at least some of the recorded variables are linearly interdependent. This may be stated, when analyzing the eigenvalues (of their correlation matrix), exhibited in Figure 1.

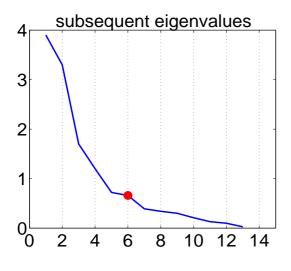


Fig. 1. Scree graph exhibiting eigenvalues of correlation matrix calculated from N = 3300 genes. The decay of subsequent eigenvalues is shown. It seems that h = 6 is the right number of latent variables. To the right of the 6th eigenvalue – marked by a big filled circle – the decay exhibits a linear pattern, which means that no more common factors can be extracted

Our problem is: Could the observed variables be transformed to a reduced set, containing h < d new, derived features – without loosing not too much of total inertia (variance) of the entire set.

We apply for our task 3 methods: (1) traditional principal components, (2) probabilistic principal components, (3) neural networks using multilayer perceptrons in the 13-6-13 layout. It seems, that the data may be explained by h = 6derived latent variables. Thus, in further analysis we were seeking for 6 new, derived features, called also latent variables. We think, we were quite successful: The traditional PCA and the NN models explain, when using 6 factors, about 88% of total variability of the data; however these methods do not provide any generative model of the data. Probabilistic principal components (Bishop, Tipping 1999) permit to find h = 6 features, which are able to reproduce 78.53 % of total variance of the data.

This result is interesting for several reasons: (1), it is confirmed, that *principal components* extract too much of total variance of the data set (which means, that they account some random effects as systematic effects). (2), it was interesting to state, that *neural networks* using perceptrons behave similarly as principal components and yield similarly overestimated approximation of hidden factors. This is opposed to the recent paper by Nicole [5], where some doubts were expressed, whether neural networks are suitable for a broad application in biological systems. (3), the *new features (latent variables)*, derived from the observed variables, have a very clear and interesting interpretation: The set of 12 variables (representing 3 legs of the spider-plots [6]) has split into 3 double factors, each factor expressed by 2 latent variables.

In the following we explain briefly the methods and show some results obtained when using the chosen methods.

2. Traditional PCA and Probabilistic PCA

Traditional PCA is well explained in the books by Jolliffe (2002) or Krzanowski (2000). PCA is a purely mathematical technique, working with available data. No underlying generative model of the data is considered. The predictions of the target data are heuristic, based on the data sample on which the predictions were evaluated. The method reproduces the entire data set (or, its covariance matrix), by rank one matrices.

However, the principal components - based only on the gathered data - do not provide any generative model of the data, and no generalization can be done, neither no statistical tests of significance.

A more general approach is by introducing a generative model of the data, which is valid also in the context of neural neutworks, considered as a tool for data analysis. Nabney [4] writes: "The goal of training a network is to model the underlying generator of the data in order to make the best possible predictions when new input data is presented. The most general information about the target vector \mathbf{t} for inputs \mathbf{x} is given by the conditional density $p(\mathbf{t} | \mathbf{x})$ ".

Tipping and Bishop (see, e.g., [7]) have introduced *probabilistic principal components* working with a generative data model. The following basic model is assumed:

$$\mathbf{t} = \mathbf{W}\mathbf{x} + \boldsymbol{\mu} + \boldsymbol{\epsilon} \tag{1}$$

Here **t** and **x** denote the observational and latent variables, and ϵ – Gaussian noise $\sigma^2 \mathbf{I}$.

The observed values \mathbf{t} in d variables are supposed to be generated by q < d hidden (latent) variables \mathbf{x} distributed normally with isotropic variance.

Under the assumed model [1] the observed vector \mathbf{t} is distributed normally .

$$\mathbf{t} \sim N_d(\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I}). \tag{2}$$

The unknown parameters of the model [2] are: **W** and σ^2 . They may be estimated either directly from the log-likelihood or by the EM algorithm. Corresponding formulae may be found in the paper by Tipping and Bishop [7].

3. Multi-layer perceptron

Neural networks have developed a special type of learning (Hebbian learning) to capture the essential characteristics (main directions) of the data. Quite a lot of research was needed to find out, what really the Hebbian learning is yielding.

Generally, artificial neural networks are considered as semiparametric or non-parametric models for data analysis, see e.g., Gaudart et al. [3], and the references therein. Realization of the method of principal components in the framework of Hebbian learning was the subject of many investigations, (see, e.g., the papers by Oja, Sanger et others). Recently, a critical discussion of the approaches has been published by Nicole [5].

Instead of the traditional Hebbian approach we have formulated the task in terms of approximation of the data. Thus the network has as target the data presented at the input. The number of neurons in the hidden layer was put equal to h, the number of the desired hidden factors (in our case this was h = 6).

For our yeast genome data we have used a multi-layer perceptron with 2 hidden layers. Its layout was: 13 - 6 - 13. This means, there were 13 inputs, the first hidden layer with h = 6 neurons has being condensing the inputs to 6 derived variables. The derived 6 variables z_1, \ldots, z_6 acted as input to the second hidden layer who's task was to reproduce from the z's the target, which was again the input vector.

The implementation in Netlab puts in the first layer as obligatory the 'tanh' activation function, which makes that all z's are contained in the interval (-1,1). The second hidden layer has used the 'linear' activation function.

The network needed about 3000 epochs (presentations of the data matrix) to get stabilized parameters.

It was a big surprise to us obtaining, by such a standard and simple tool, results very similar to those, obtained by probabilistic PCA with rotation varimax.

Table 1. Matrix **W** expressing 6 latent variables for the yeast genome data. The presented matrix was obtained from rotated matrix $\mathbf{U}\sqrt{(\mathbf{\Lambda} - \sigma^2 \mathbf{I})}$.

	1.leg	1.leg	3.leg	2.leg	3.leg	2.leg	%
ang1	08	<u>.84</u>	.07	18	21	.14	.81
ang2	.03	10	08	.83	.13	.17	.76
ang3	.00	06	85	.06	.11	.02	.74
x1	.72	37	09	.28	.15	28	.84
y1	$\underline{.58}$.67	.06	02	27	.02	.85
$\mathbf{x}2$.30	17	04	.69	.16	42	.80
y2	21	.08	17	.20	.14	$\underline{.82}$.81
$\mathbf{x3}$	04	27	20	.24	.74	01	.71
y3	.05	04	79	.05	.27	.17	.73
lgth	.65	01	08	06	14	50	.70
rho1	$\underline{.85}$.21	.04	.14	16	24	.88
rho2	.29	10	.09	.21	05	83	.84
rho3	.15	.12	.24	05	<u>77</u>	19	.73

Table 2. Results from training a perceptron with layout 13-6-13 using the yeast genome data. Weights connecting the hidden layer with neurons of the input layer are shown. All weights were multiplied by 10. To be comparable with results from Table 1, some columns should be permuted.

	3.leg	2.leg	2.leg	1.leg	1.leg	3.leg
ang1	10	.03	22	<u>76</u>	26	43
ang2	.41	32	<u>64</u>	.21	34	.06
ang3	<u>.96</u>	.04	.37	40	15	<u>.61</u>
x1	.17	11	.06	.43	.51	20
y1	.06	.02	31	37	.31	54
$\mathbf{x}2$.27	<u>55</u>	24	.07	29	02
y2	.27	.40	44	.26	.05	20
$\mathbf{x}3$	08	16	.32	.20	25	75
y3	<u>.82</u>	.13	.36	26	05	.19
lgth	.15	13	.24	09	.39	.01
rho1	.12	05	18	00	.52	40
rho2	05	<u>55</u>	.20	23	25	.18
rho3	.12	03	<u>39</u>	11	.22	<u>.92</u>

References

- Cebrat S., Dudek M.R. The effect of DNA phase structure on DNA walks. The European Physical Journal B., 3 (1998), 271–276.
- [2] Cebrat S., Mackiewicz P., Dudek M.R. The role of the genetic code in generating new coding sequences inside existing genes. Biosystems, 45 (2) (1988), 165–176.
- [3] Gaudart J., Giusiano, B., Huiart L., Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data. Computational Statistics & Data Analysis, 44 (2004), 547–570.
- [4] Nabney I., Netlab: Algorithms for Pattern Recognition. Springer, 2002.
- [5] Nicole S., Feedforward neural networks for principal components extraction. Computational Statistics & Data Analysis, 33(2000), 425–437.
- [6] Smorfland: http://smorfland.microb.uni.wroc.pl/
- [7] Tipping M.E., Bishop C.M, Probabilistic principal component analysis. J. Roy. Statist. Soc., B, 61 (1999), 611-622.